针对鲸鱼优化算法(whale optimization algorithm,WOA)易陷入局部最优,收敛速度慢和寻优精度低等问题,提出一种融合混沌映射和二次插值的自适应鲸鱼优化算法(adaptive whale optimization algorithm based on chaotic mapping and quadr...针对鲸鱼优化算法(whale optimization algorithm,WOA)易陷入局部最优,收敛速度慢和寻优精度低等问题,提出一种融合混沌映射和二次插值的自适应鲸鱼优化算法(adaptive whale optimization algorithm based on chaotic mapping and quadratic interpolation,CQAWOA)。引入混沌映射在初始化阶段生成新种群,实现种群多样性;设计自适应权重,提高算法全局搜索和局部寻优能力并加快收敛速度;利用二次插值策略生成新的鲸鱼个体,采用贪婪策略更新局部最优解,提高种群计算的精度。通过15个基准函数将改进算法与其它优化算法进行对比测试,测试结果验证了在求解过程中,改进算法寻优速度和求解精度均存在显著提升。展开更多
文摘针对鲸鱼优化算法(whale optimization algorithm,WOA)易陷入局部最优,收敛速度慢和寻优精度低等问题,提出一种融合混沌映射和二次插值的自适应鲸鱼优化算法(adaptive whale optimization algorithm based on chaotic mapping and quadratic interpolation,CQAWOA)。引入混沌映射在初始化阶段生成新种群,实现种群多样性;设计自适应权重,提高算法全局搜索和局部寻优能力并加快收敛速度;利用二次插值策略生成新的鲸鱼个体,采用贪婪策略更新局部最优解,提高种群计算的精度。通过15个基准函数将改进算法与其它优化算法进行对比测试,测试结果验证了在求解过程中,改进算法寻优速度和求解精度均存在显著提升。