期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于高光谱图像和遗传优化神经网络的茶叶病斑识别 被引量:22
1
作者 张帅 王紫烟 +2 位作者 邹修国 钱燕 余磊 《农业工程学报》 EI CAS CSCD 北大核心 2017年第22期200-207,共8页
为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像。提取感兴趣区域敏感波段的相对光谱反射率作为... 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像。提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征。通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征。利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s。试验结果表明:高光谱成像技术和遗传优化神经网络可以快速准确的实现对茶叶病斑的识别,可为植保无人机超低空遥感病害监测提供参考。 展开更多
关键词 算法 优化 神经网络 高光谱成像技术 主成分分析 光谱特征
下载PDF
基于复小波及动态神经网络的植物电信号研究 被引量:3
2
作者 高子淋 王佳平 +1 位作者 张帅 邹修国 《南京农业大学学报》 CAS CSCD 北大核心 2017年第3期556-563,共8页
[目的]针对植物电信号数量级小、易受干扰的问题,提出了双树复小波变换(DT-CWT)结合双变量收缩消噪及不带输入变量的非线性自回归神经网络(NAR)模型,旨在能将植物电信号用于研究温室内植物生长模型。[方法]在屏蔽环境下获取生长状况良... [目的]针对植物电信号数量级小、易受干扰的问题,提出了双树复小波变换(DT-CWT)结合双变量收缩消噪及不带输入变量的非线性自回归神经网络(NAR)模型,旨在能将植物电信号用于研究温室内植物生长模型。[方法]在屏蔽环境下获取生长状况良好的鸟巢蕨植株的电信号。采用双树复小波变换将电信号进行分解,利用层间小波系数具有相关性的特点,将分解后的小波系数进行双变量收缩消噪。通过对植物电信号进行自相关分析,确定迟滞阶数。再通过NAR网络训练消噪信号。[结果]采用双树复小波消噪后的信号虚部树的高频分量明显减少。消噪后的植物电信号前序98个样本点的自相关系数均大于0.8,迟滞阶数98。采用本模型对消噪后的电信号进行预测时相关系数为0.973,均方误差(MSE)为0.593 mv^2。相比于软阈值消噪与硬阈值消噪,本模型的消噪方法信噪比(SNR)最大,MSE最小。对碧玉、白鹤芋2种植物应用本模型,决定系数分别为0.975和0.972,MSE分别为0.112 mv^2和4.459×10^(-2)mv^2。[结论]植物电信号2个相邻时刻间具有很强的关联性,消噪过程对虚部树的影响更大,双树复小波分解结合双变量收缩的消噪方法更大程度上保留了信号的原始信息。本模型具有可推广性。 展开更多
关键词 双变量收缩 双树复小波变换 NAR动态神经网络 植物电信号
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部