WS2 has been considered as a promising anode material due to its high lithium storage capacity as well as fascinating physical properties. However, the insufficient electrical and ionic conductivities deteriorate the ...WS2 has been considered as a promising anode material due to its high lithium storage capacity as well as fascinating physical properties. However, the insufficient electrical and ionic conductivities deteriorate the rate per- formance of the batteries. Herein, we report a simple synthetic approach towards graphene-WS2 hybrids by rolling graphene into a hollow nanotube in which WSz nanoplates are en- capsulated. This new electrode design strategy facilitates the fabrication of integrated and binder-free lithium ion battery and sodium ion battery electrodes by combining electrospin- ning and chemical vapor deposition (CVD) methods. Bene- fiting from their confined growth and the interconnected in- situ graphitic carbon coating nanocable web, the WS2@G with nano-level WS2 dispersion not only provides an efficiently conductive and electrolyte accessible framework, but effec- tively alleviates the volume change during the cycling, en- abling a mechanically robust binder-free electrode along with the outstanding electrochemical Li+ and Na+ storage proper- ties.展开更多
为发展下一代高性能电池,具有超高比容量(3860 mAh g^(-1))和低氧化还原电位(相对于标准氢电极(SHE)-3.04 V)的金属锂负极已成为广泛研究的热点。然而,不可控的枝晶生长、较低的库伦效率和巨大的体积形变等问题严重阻碍了金属锂负极的...为发展下一代高性能电池,具有超高比容量(3860 mAh g^(-1))和低氧化还原电位(相对于标准氢电极(SHE)-3.04 V)的金属锂负极已成为广泛研究的热点。然而,不可控的枝晶生长、较低的库伦效率和巨大的体积形变等问题严重阻碍了金属锂负极的商业化应用进程。炭材料由于具有高电子迁移率、稳定的电化学性能、可调节的物理化学性质以及质量轻等特点,被认为是克服这些问题非常有前景的一种金属锂宿主/载体材料。基于此,作者讨论了炭宿主/载体调控和设计方面取得的最新进展,并基于炭材料单元维度变化,总结和讨论碳宿主/载体的锂亲和性改性策略及炭材料单元维度变化和锂亲和性调控与电化学性能的关系。最后,面向实用化可充电金属锂电池,提出高性能炭宿主/载体合理构建的发展方向和前景。展开更多
基金supported by the Ministry of Science and Technology of China (2012CB933403)the National Natural Science Foundation of China (51425302, 51302045 and 5170021056)+2 种基金Beijing Municipal Science and Technology Commission (Z121100006812003)the Opening Project of State Key Laboratory of Advanced Technology for Float Glassthe Chinese Academy of Sciences
文摘WS2 has been considered as a promising anode material due to its high lithium storage capacity as well as fascinating physical properties. However, the insufficient electrical and ionic conductivities deteriorate the rate per- formance of the batteries. Herein, we report a simple synthetic approach towards graphene-WS2 hybrids by rolling graphene into a hollow nanotube in which WSz nanoplates are en- capsulated. This new electrode design strategy facilitates the fabrication of integrated and binder-free lithium ion battery and sodium ion battery electrodes by combining electrospin- ning and chemical vapor deposition (CVD) methods. Bene- fiting from their confined growth and the interconnected in- situ graphitic carbon coating nanocable web, the WS2@G with nano-level WS2 dispersion not only provides an efficiently conductive and electrolyte accessible framework, but effec- tively alleviates the volume change during the cycling, en- abling a mechanically robust binder-free electrode along with the outstanding electrochemical Li+ and Na+ storage proper- ties.
文摘为发展下一代高性能电池,具有超高比容量(3860 mAh g^(-1))和低氧化还原电位(相对于标准氢电极(SHE)-3.04 V)的金属锂负极已成为广泛研究的热点。然而,不可控的枝晶生长、较低的库伦效率和巨大的体积形变等问题严重阻碍了金属锂负极的商业化应用进程。炭材料由于具有高电子迁移率、稳定的电化学性能、可调节的物理化学性质以及质量轻等特点,被认为是克服这些问题非常有前景的一种金属锂宿主/载体材料。基于此,作者讨论了炭宿主/载体调控和设计方面取得的最新进展,并基于炭材料单元维度变化,总结和讨论碳宿主/载体的锂亲和性改性策略及炭材料单元维度变化和锂亲和性调控与电化学性能的关系。最后,面向实用化可充电金属锂电池,提出高性能炭宿主/载体合理构建的发展方向和前景。