期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MRMR-SSA-BP的PM_(2.5)浓度预测模型
1
作者
张
一准
颜七笙
《计算机仿真》
北大核心
2023年第8期511-517,共7页
PM_(2.5)的浓度预测对治理空气和改善环境起着至关重要的作用。以济南市2019年的空气质量数据和气象数据作为研究对象,提出基于最大相关最小冗余算法(MRMR)和麻雀搜索算法(SSA)优化的BP神经网络模型。该模型通过麻雀搜索算法对BP神经网...
PM_(2.5)的浓度预测对治理空气和改善环境起着至关重要的作用。以济南市2019年的空气质量数据和气象数据作为研究对象,提出基于最大相关最小冗余算法(MRMR)和麻雀搜索算法(SSA)优化的BP神经网络模型。该模型通过麻雀搜索算法对BP神经网络的初始权值和阈值优化,仿真出BP神经网络初始的最优权值和阈值。把最大相关最小冗余算法选出的最优的特征值作为模型的输入,完成PM_(2.5)浓度的预测。仿真结果表明,与MRMR-BP,SSA-BP,BP等模型相比,MRMR-SSA-BP模型预测效果最佳,为PM_(2.5)浓度的预测提供了一种新的参考方法。
展开更多
关键词
最大相关最小冗余
麻雀搜索算法
神经网络
空气污染
下载PDF
职称材料
题名
基于MRMR-SSA-BP的PM_(2.5)浓度预测模型
1
作者
张
一准
颜七笙
机构
东华理工大学地球科学学院
东华理工大学理学院
出处
《计算机仿真》
北大核心
2023年第8期511-517,共7页
基金
国家自然科学基金资助项目(71961001)。
文摘
PM_(2.5)的浓度预测对治理空气和改善环境起着至关重要的作用。以济南市2019年的空气质量数据和气象数据作为研究对象,提出基于最大相关最小冗余算法(MRMR)和麻雀搜索算法(SSA)优化的BP神经网络模型。该模型通过麻雀搜索算法对BP神经网络的初始权值和阈值优化,仿真出BP神经网络初始的最优权值和阈值。把最大相关最小冗余算法选出的最优的特征值作为模型的输入,完成PM_(2.5)浓度的预测。仿真结果表明,与MRMR-BP,SSA-BP,BP等模型相比,MRMR-SSA-BP模型预测效果最佳,为PM_(2.5)浓度的预测提供了一种新的参考方法。
关键词
最大相关最小冗余
麻雀搜索算法
神经网络
空气污染
Keywords
Maximum correlation minimum redundancy
Sparrow search algorithm
Neural network
Air pollution
分类号
TV139.1 [水利工程—水力学及河流动力学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MRMR-SSA-BP的PM_(2.5)浓度预测模型
张
一准
颜七笙
《计算机仿真》
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部