Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcog...Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcogenide cathodes normally possess only a moderate capacity and a relatively low cycling stability,respectively,which limit the further development of high-performance AIBs.Here,based on the results of first principles calculations,we developed a polyaniline/graphene oxide composite that exhibited outstanding performances as a cathode material in AIBs(delivering 180 mA h g^−1 after 4000 cycles),considering both the discharge capacity and the cycling performance.Ex-situ characterizations verified that the charge storage mechanism of polyaniline depended on the moderate interactions between−NH in the polyaniline chain and the electrolyte anions,such as AlCl4^−.These findings lay the foundation of the development of high-performance AIBs based on conducting polymers.展开更多
基金financially supported by the National Natural Science Foundation of China (51877216 and 21773309)Taishan Scholar Foundation (tsqn20161017)+1 种基金the Major Program of Shandong Province Natural Science Foundation (ZR201801280009)the Fundamental Research Funds for the Central Universities(18CX05007A,19CX05001A and 19CX05002A)
文摘Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcogenide cathodes normally possess only a moderate capacity and a relatively low cycling stability,respectively,which limit the further development of high-performance AIBs.Here,based on the results of first principles calculations,we developed a polyaniline/graphene oxide composite that exhibited outstanding performances as a cathode material in AIBs(delivering 180 mA h g^−1 after 4000 cycles),considering both the discharge capacity and the cycling performance.Ex-situ characterizations verified that the charge storage mechanism of polyaniline depended on the moderate interactions between−NH in the polyaniline chain and the electrolyte anions,such as AlCl4^−.These findings lay the foundation of the development of high-performance AIBs based on conducting polymers.