Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussia...Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussian distribution.In some cases,this assumption no longer holds and the performance of the traditional SLAM algorithms declines.In this paper,we present a robust SLAM algorithm based on variational Bayes method by modelling the observation noise as inverse-Wishart distribution with "harmonic mean".Besides,cubature integration is utilized to solve the problem of nonlinear system.The proposed algorithm can effectively solve the problem of filtering divergence for traditional filtering algorithm when suffering the time-variant observation noise,especially for heavy-tai led noise.To validate the algorithm,we compare it with other t raditional filtering algorithms.The results show the effectiveness of the algorithm.展开更多
Domain adaptation and adversarial networks are two main approaches for transfer learning.Domain adaptation methods match the mean values of source and target domains,which requires a very large batch size during train...Domain adaptation and adversarial networks are two main approaches for transfer learning.Domain adaptation methods match the mean values of source and target domains,which requires a very large batch size during training.However,adversarial networks are usually unstable when training.In this paper,we propose a joint method of feature matching and adversarial networks to reduce domain discrepancy and mine domaininvariant features from the local and global aspects.At the same time,our method improves the stability of training.Moreover,the method is embedded into a unified convolutional neural network that can be easily optimized by gradient descent.Experimental results show that our joint method can yield the state-of-the-art results on three common public datasets.展开更多
Rectification for airborne linear images is an indispensable preprocessing step. This paper presents in detail a two-step rectification algorithm. The first step is to establish the model of direct georeference positi...Rectification for airborne linear images is an indispensable preprocessing step. This paper presents in detail a two-step rectification algorithm. The first step is to establish the model of direct georeference position using the data provided by the Po- sitioning and Orientation System (POS) and obtain the mathematical relationships between the image points and ground reference points. The second step is to apply polynomial distortion model and Bilinear Interpolation to get the final precise rectified images. In this step, a reference image is required and some ground control points (GCPs) are selected. Experiments showed that the final rectified images are satisfactory, and that our two-step rectification algorithm is very effective.展开更多
This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and feature...This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features, they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.展开更多
基金the National Natural Science Foundation of China(No.61803260)。
文摘Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussian distribution.In some cases,this assumption no longer holds and the performance of the traditional SLAM algorithms declines.In this paper,we present a robust SLAM algorithm based on variational Bayes method by modelling the observation noise as inverse-Wishart distribution with "harmonic mean".Besides,cubature integration is utilized to solve the problem of nonlinear system.The proposed algorithm can effectively solve the problem of filtering divergence for traditional filtering algorithm when suffering the time-variant observation noise,especially for heavy-tai led noise.To validate the algorithm,we compare it with other t raditional filtering algorithms.The results show the effectiveness of the algorithm.
基金the Aerospace Science and Technology Foundation(No.20115557007)the National Natural Science Foundation of China(No.61673262)the Military Science and Technology Foundation of China(No.18-H863-03-ZT-001-006-06)
文摘Domain adaptation and adversarial networks are two main approaches for transfer learning.Domain adaptation methods match the mean values of source and target domains,which requires a very large batch size during training.However,adversarial networks are usually unstable when training.In this paper,we propose a joint method of feature matching and adversarial networks to reduce domain discrepancy and mine domaininvariant features from the local and global aspects.At the same time,our method improves the stability of training.Moreover,the method is embedded into a unified convolutional neural network that can be easily optimized by gradient descent.Experimental results show that our joint method can yield the state-of-the-art results on three common public datasets.
基金Project (No. 02DZ15001) supported by Shanghai Science and Technology Development Funds, China
文摘Rectification for airborne linear images is an indispensable preprocessing step. This paper presents in detail a two-step rectification algorithm. The first step is to establish the model of direct georeference position using the data provided by the Po- sitioning and Orientation System (POS) and obtain the mathematical relationships between the image points and ground reference points. The second step is to apply polynomial distortion model and Bilinear Interpolation to get the final precise rectified images. In this step, a reference image is required and some ground control points (GCPs) are selected. Experiments showed that the final rectified images are satisfactory, and that our two-step rectification algorithm is very effective.
基金Shanghai Science and Technology Devel-opm ent Funds ( No.0 2 DZ15 0 0 1)
文摘This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features, they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.