期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于拟蒙特卡洛的K均值聚类中心初始化方法
被引量:
6
1
作者
庄
瑞格
倪泽邦
刘学艺
《济南大学学报(自然科学版)》
北大核心
2017年第1期35-41,共7页
针对传统K-means算法随机选择初始聚类中心容易造成聚类结果不稳定且准确率低等问题,基于拟蒙特卡洛(Quasi-Monte Carlo,QMC)方法提出一种新的初始聚类中心确定方法;该算法利用QMC序列分布的超均匀性特点,对整个样本空间中的样本分布进...
针对传统K-means算法随机选择初始聚类中心容易造成聚类结果不稳定且准确率低等问题,基于拟蒙特卡洛(Quasi-Monte Carlo,QMC)方法提出一种新的初始聚类中心确定方法;该算法利用QMC序列分布的超均匀性特点,对整个样本空间中的样本分布进行采样估计;基于k近邻距离(k-distance)对QMC序列点进行加权的K-means聚类,得到初始聚类中心。该算法的计算复杂度为O(max(d、n)logn),其中d、n分别表示样本数据的维数和数量;在人工数据和实际数据集上的仿真实验表明,该算法能选择更优的初始聚类中心,有效降低K-means算法的迭代次数,提高聚类的准确性、鲁棒性和收敛速度。
展开更多
关键词
K-MEANS聚类
拟蒙特卡洛
k最近邻
初始聚类中心
下载PDF
职称材料
题名
基于拟蒙特卡洛的K均值聚类中心初始化方法
被引量:
6
1
作者
庄
瑞格
倪泽邦
刘学艺
机构
中国计量大学理学院
中国计量大学量新学院
出处
《济南大学学报(自然科学版)》
北大核心
2017年第1期35-41,共7页
基金
浙江省自然科学基金项目(LY14F030020)
文摘
针对传统K-means算法随机选择初始聚类中心容易造成聚类结果不稳定且准确率低等问题,基于拟蒙特卡洛(Quasi-Monte Carlo,QMC)方法提出一种新的初始聚类中心确定方法;该算法利用QMC序列分布的超均匀性特点,对整个样本空间中的样本分布进行采样估计;基于k近邻距离(k-distance)对QMC序列点进行加权的K-means聚类,得到初始聚类中心。该算法的计算复杂度为O(max(d、n)logn),其中d、n分别表示样本数据的维数和数量;在人工数据和实际数据集上的仿真实验表明,该算法能选择更优的初始聚类中心,有效降低K-means算法的迭代次数,提高聚类的准确性、鲁棒性和收敛速度。
关键词
K-MEANS聚类
拟蒙特卡洛
k最近邻
初始聚类中心
Keywords
K - means clustering
quasi-Monte Carlo
k - nearest neighbor
initial clustering center
分类号
TP301 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于拟蒙特卡洛的K均值聚类中心初始化方法
庄
瑞格
倪泽邦
刘学艺
《济南大学学报(自然科学版)》
北大核心
2017
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部