聚类是一种典型且重要的数据挖掘方法,但现有聚类算法大多需要人为指定聚类的数量,并且聚类结果对参数敏感.针对上述不足,本文提出一种基于子博弈完美均衡的启发式聚类算法(Heuristic Clustering algorithm based on Sub-game Perfect E...聚类是一种典型且重要的数据挖掘方法,但现有聚类算法大多需要人为指定聚类的数量,并且聚类结果对参数敏感.针对上述不足,本文提出一种基于子博弈完美均衡的启发式聚类算法(Heuristic Clustering algorithm based on Sub-game Perfect Equilibrium,HCSPE).该算法充分挖掘数据点自身的分布特征信息,通过启发式方法得到自适应的参数值,从而使数据点局部密度属性值的得出具有客观性和普适性,降低了聚类结果对参数的敏感性.基于博弈的思想,综合局部密度和相对距离两个属性形成数据点的竞争力,依靠竞争机制完成聚类数量的自动计算以及聚类中心的确定.在多个规模和类型均不相同的数据集上的实验结果表明,本文所提出算法的性能指标整体优于其他算法,并且聚类结果更符合客观所需.展开更多
文摘聚类是一种典型且重要的数据挖掘方法,但现有聚类算法大多需要人为指定聚类的数量,并且聚类结果对参数敏感.针对上述不足,本文提出一种基于子博弈完美均衡的启发式聚类算法(Heuristic Clustering algorithm based on Sub-game Perfect Equilibrium,HCSPE).该算法充分挖掘数据点自身的分布特征信息,通过启发式方法得到自适应的参数值,从而使数据点局部密度属性值的得出具有客观性和普适性,降低了聚类结果对参数的敏感性.基于博弈的思想,综合局部密度和相对距离两个属性形成数据点的竞争力,依靠竞争机制完成聚类数量的自动计算以及聚类中心的确定.在多个规模和类型均不相同的数据集上的实验结果表明,本文所提出算法的性能指标整体优于其他算法,并且聚类结果更符合客观所需.