针对SAR图像船舶检测任务在船舶组合和船舶融合场景下低检测精度的问题,提出了一种轻量化船舶检测算法——RGDET-Ship,有效提高了SAR图像在复杂场景下的船舶检测精度。该算法的创新点包括:①构建基于改进ResNet的基础主干网络,增强深浅...针对SAR图像船舶检测任务在船舶组合和船舶融合场景下低检测精度的问题,提出了一种轻量化船舶检测算法——RGDET-Ship,有效提高了SAR图像在复杂场景下的船舶检测精度。该算法的创新点包括:①构建基于改进ResNet的基础主干网络,增强深浅网络早特征融合,保留更丰富的有效特征图,并利用RegNet进行模型搜索得到一簇最优结构子网络RegNet and Early-Add(RGEA),实现模型的轻量化;②在FPN Neck基础上,结合EA-fusion策略设计出FPN and Early Add Fusion(FEAF)Neck网络,进一步加强深浅特征晚融合,提高中大船舶目标特征的提取;③通过细粒度分析改进RPN网络得到Two-RPN(TRPN)网络,提高模型的检测粒度和预测框准确性;④引入多任务损失函数——Cross Entropy Loss and Smooth L1 Loss(CE_S),包括分类任务和回归任务,进一步提升检测性能。通过在标准基准数据集SSDD上进行大量实验,验证了RGDET-Ship模型的有效性和健壮性。实验结果表明,相较于Faster RCNN和Cascade RCNN,RGDET-Ship在mAP_0.5:0.95上分别提升了5.6%和3.3%,在AR上分别提升了9.8%和7.6%。展开更多
文摘针对SAR图像船舶检测任务在船舶组合和船舶融合场景下低检测精度的问题,提出了一种轻量化船舶检测算法——RGDET-Ship,有效提高了SAR图像在复杂场景下的船舶检测精度。该算法的创新点包括:①构建基于改进ResNet的基础主干网络,增强深浅网络早特征融合,保留更丰富的有效特征图,并利用RegNet进行模型搜索得到一簇最优结构子网络RegNet and Early-Add(RGEA),实现模型的轻量化;②在FPN Neck基础上,结合EA-fusion策略设计出FPN and Early Add Fusion(FEAF)Neck网络,进一步加强深浅特征晚融合,提高中大船舶目标特征的提取;③通过细粒度分析改进RPN网络得到Two-RPN(TRPN)网络,提高模型的检测粒度和预测框准确性;④引入多任务损失函数——Cross Entropy Loss and Smooth L1 Loss(CE_S),包括分类任务和回归任务,进一步提升检测性能。通过在标准基准数据集SSDD上进行大量实验,验证了RGDET-Ship模型的有效性和健壮性。实验结果表明,相较于Faster RCNN和Cascade RCNN,RGDET-Ship在mAP_0.5:0.95上分别提升了5.6%和3.3%,在AR上分别提升了9.8%和7.6%。
文摘针对遥感影像复杂背景和小目标检测困难的问题,提出了一种基于多感知融合的检测算法YOLO-GT。为了提升特征图中小目标的特征信息,设计了包含3种感知机制的检测头Adaptive Scale-Aware Dynamic Head(ASADH);引入轻量级上采样算子Content-Aware ReAssembly of Features (CARAFE),解决语义信息丢失问题,提升特征金字塔网络性能;为进一步优化模型的训练速度和定位精度,采用了Wise-IoU作为损失函数。实验结果在DIOR数据集上显示,模型精度达90.4%,比原算法提高2.1%。这些改进有效提高了复杂背景下遥感影像小目标的检测性能。