针对以往场景识别研究中将图像分割成大小相等的矩形区域进行特征提取而导致识别率低的问题,提出了一种基于超像素空间金字塔模型的场景识别方法:先对图像做不同分辨率的超像素分割,在得到的每个图像子区域中提取PACT特征,然后利用K-me...针对以往场景识别研究中将图像分割成大小相等的矩形区域进行特征提取而导致识别率低的问题,提出了一种基于超像素空间金字塔模型的场景识别方法:先对图像做不同分辨率的超像素分割,在得到的每个图像子区域中提取PACT特征,然后利用K-means聚类构建出图像集的视觉词典。在进行场景识别时,将每幅图像所有分割子区域的PACT特征连接成一个特征向量,并加入bag of words特征进行分类,最终的场景分类结果在支持向量机LIBSVM上获得。实验结果表明该算法能够有效提高识别率。展开更多
Content-based shape retrieval techniques can facilitate 3D model resource reuse, 3D model modeling, object recognition, and 3D content classification. Recently more and more researchers have attempted to solve the pro...Content-based shape retrieval techniques can facilitate 3D model resource reuse, 3D model modeling, object recognition, and 3D content classification. Recently more and more researchers have attempted to solve the problems of partial retrieval in the domain of computer graphics, vision, CAD, and multimedia. Unfortunately, in the literature, there is little comprehensive discussion on the state-of-the-art methods of partial shape retrieval. In this article we focus on reviewing the partial shape retrieval methods over the last decade, and help novices to grasp latest developments in this field. We first give the definition of partial retrieval and discuss its desirable capabilities. Secondly, we classify the existing methods on partial shape retrieval into three classes by several criteria, describe the main ideas and techniques for each class, and detailedly compare their advantages and limits. We also present several relevant 3D datasets and corresponding evaluation metrics, which are necessary for evaluating partial retrieval performance. Finally, we discuss possible research directions to address partial shape retrieval.展开更多
针对现有各类同步定位与地图构建(simultaneous localization and mapping,SLAM)方法的效率与精度问题,本文提出了一种适用于大尺度场景且鲁棒高效的SLAM方法。该方法使用直接优化与特征匹配融合定位算法提高SLAM过程的鲁棒性,采用图优...针对现有各类同步定位与地图构建(simultaneous localization and mapping,SLAM)方法的效率与精度问题,本文提出了一种适用于大尺度场景且鲁棒高效的SLAM方法。该方法使用直接优化与特征匹配融合定位算法提高SLAM过程的鲁棒性,采用图优化算法融合多源数据,并结合高效率联合稀疏优化方法,扩大SLAM系统处理的场景规模。此外,通过采用回环检测策略,有效抑制了重建过程中场景漂移现象的出现。通过对3个大尺度场景进行同步定位与地图构建实验,验证了本方法的有效性。相较于既有SLAM方法,该方法的三维重建效率获得了成倍提升。展开更多
文摘针对以往场景识别研究中将图像分割成大小相等的矩形区域进行特征提取而导致识别率低的问题,提出了一种基于超像素空间金字塔模型的场景识别方法:先对图像做不同分辨率的超像素分割,在得到的每个图像子区域中提取PACT特征,然后利用K-means聚类构建出图像集的视觉词典。在进行场景识别时,将每幅图像所有分割子区域的PACT特征连接成一个特征向量,并加入bag of words特征进行分类,最终的场景分类结果在支持向量机LIBSVM上获得。实验结果表明该算法能够有效提高识别率。
基金supported by the National Natural Science Foundation of China under Grant Nos. 61003137, 61202185, 61005018,91120005the Fundamental Fund of Research of Northwestern Polytechnical University of China under Grant Nos. JC201202,JC201220,JC20120237+2 种基金the Natural Science Foundation of Shaanxi Province of China under Grant No. 2012JQ8037the Open Fund from the State Key Lab of CAD&CG of Zhejiang University of Chinathe Program for New Century Excellent Talents in University of China under grant No. NCET-10-0079
文摘Content-based shape retrieval techniques can facilitate 3D model resource reuse, 3D model modeling, object recognition, and 3D content classification. Recently more and more researchers have attempted to solve the problems of partial retrieval in the domain of computer graphics, vision, CAD, and multimedia. Unfortunately, in the literature, there is little comprehensive discussion on the state-of-the-art methods of partial shape retrieval. In this article we focus on reviewing the partial shape retrieval methods over the last decade, and help novices to grasp latest developments in this field. We first give the definition of partial retrieval and discuss its desirable capabilities. Secondly, we classify the existing methods on partial shape retrieval into three classes by several criteria, describe the main ideas and techniques for each class, and detailedly compare their advantages and limits. We also present several relevant 3D datasets and corresponding evaluation metrics, which are necessary for evaluating partial retrieval performance. Finally, we discuss possible research directions to address partial shape retrieval.
文摘针对现有各类同步定位与地图构建(simultaneous localization and mapping,SLAM)方法的效率与精度问题,本文提出了一种适用于大尺度场景且鲁棒高效的SLAM方法。该方法使用直接优化与特征匹配融合定位算法提高SLAM过程的鲁棒性,采用图优化算法融合多源数据,并结合高效率联合稀疏优化方法,扩大SLAM系统处理的场景规模。此外,通过采用回环检测策略,有效抑制了重建过程中场景漂移现象的出现。通过对3个大尺度场景进行同步定位与地图构建实验,验证了本方法的有效性。相较于既有SLAM方法,该方法的三维重建效率获得了成倍提升。