期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于注意力自相关机制的跟踪外观特征 被引量:1
1
作者 窦光义 魏发南 +1 位作者 邱创一 建树 《计算机应用》 CSCD 北大核心 2023年第4期1248-1254,共7页
为了解决多目标跟踪(MOT)算法中由于模糊行人特征造成的身份切换(IDS)等跟踪问题,并验证行人外观在跟踪过程中的重要性,提出了一种基于中心点检测模型的注意力自相关网络(ASCN)。首先,对原图进行通道和空间注意力网络的学习以获得两种... 为了解决多目标跟踪(MOT)算法中由于模糊行人特征造成的身份切换(IDS)等跟踪问题,并验证行人外观在跟踪过程中的重要性,提出了一种基于中心点检测模型的注意力自相关网络(ASCN)。首先,对原图进行通道和空间注意力网络的学习以获得两种不同的特征图,并对深度信息完成解耦;然后,通过特征图之间的自相关性学习,获得更加准确的行人外观特征和行人方位信息,并将这些信息用于关联过程的跟踪;此外,制作了低帧率条件下视频的跟踪数据集,以验证改进算法的性能。在视频帧率条件不理想时,改进算法利用ASCN获取了行人外观信息,相较于仅利用方位信息的跟踪算法具有更好的准确率和鲁棒性。最后,将改进算法在MOT Challenge的MOT17数据集上进行测试。实验结果表明,与不加入ASCN的FairMOT(Fairness in MOT)相比,改进算法的跟踪平均准确率(MOTA)和识别F值(IDF1)指标分别提高了0.5和1.1个百分点,IDS数减少了32.2%,且在单卡NVIDIA Tesla V100上的运行速度达到了每秒21.2帧,这验证了改进算法不仅减少了跟踪过程中的错误,也提升了整体跟踪效果,且能够满足实时性要求。 展开更多
关键词 深度学习 多目标跟踪 行人特征 注意力机制 低帧率
下载PDF
基于语义引导自注意力网络的换衣行人重识别模型
2
作者 钟建华 邱创一 +2 位作者 建树 明瑞成 钟剑锋 《计算机应用》 CSCD 北大核心 2023年第12期3719-3726,共8页
针对换衣行人重识别(ReID)任务中有效信息提取困难的问题,提出一种基于语义引导自注意力网络的换衣ReID模型。首先,利用语义信息将图像分割出无服装图像,和原始图像一起输入双分支多头自注意力网络进行计算,分别得到衣物无关特征和完整... 针对换衣行人重识别(ReID)任务中有效信息提取困难的问题,提出一种基于语义引导自注意力网络的换衣ReID模型。首先,利用语义信息将图像分割出无服装图像,和原始图像一起输入双分支多头自注意力网络进行计算,分别得到衣物无关特征和完整行人特征。其次,利用全局特征重建模块(GFR),重建两种全局特征,得到的新特征中服装区域包含换衣任务中鲁棒性更好的头部特征,使得全局特征中的显著性信息更突出;利用局部特征重组重建模块(LFRR),在完整图像特征和无服装图像特征中提取头部和鞋部局部特征,强调头部和鞋部特征的细节信息,并减少换鞋造成的干扰。最后,除了使用行人重识别中常用的身份损失和三元组损失,提出特征拉近损失(FPL),拉近局部与全局特征、完整图像特征与无服装图像特征之间的距离。在PRCC(Person ReID under moderate Clothing Change)和VC-Clothes(Virtually Changing-Clothes)数据集上,与基于衣物对抗损失(CAL)模型相比,所提模型的平均精确率均值(mAP)分别提升了4.6和0.9个百分点;在Celeb-reID和Celeb-reID-light数据集上,与联合损失胶囊网络(JLCN)模型相比,所提模型的mAP分别提升了0.2和5.0个百分点。实验结果表明,所提模型在换衣场景中突出有效信息表达方面具有一定优势。 展开更多
关键词 换衣行人重识别 多头自注意力网络 语义分割 特征重建 特征重组
下载PDF
融合自监督和自注意力的输电线语义分割网络
3
作者 赵伟杰 建树 +1 位作者 王新文 明瑞成 《微电子学与计算机》 2023年第12期61-69,共9页
要解决无人机在空中飞行过程中遭遇输电线时存在的避障难的问题,关键之一是要解决对输电线的语义分割中存在的长距离图像分割不连续的问题.为此,提出了一种添加自注意力模块来改进U-Net的语义分割算法,用于输电线的语义分割.通过自注意... 要解决无人机在空中飞行过程中遭遇输电线时存在的避障难的问题,关键之一是要解决对输电线的语义分割中存在的长距离图像分割不连续的问题.为此,提出了一种添加自注意力模块来改进U-Net的语义分割算法,用于输电线的语义分割.通过自注意力模块提取U-Net不同尺度上的全局特征,提高对跨越全局的输电线特征的捕捉能力.为进一步优化训练过程,提出最大池化标签下采样,增强对不平衡类别输电线的学习能力;提出卷积神经网络图像掩码建模自监督预训练,提高预训练权重的质量.此外,为在大规模的输电线数据集上进行验证,对TTPLA输电线输电塔数据集实例分割标签进行处理,制作了TTPLA输电线语义分割数据集.实验表明,改进的网络通过捕捉全局特征的自注意力机制、优化的深度监督过程和自监督预训练,对比原版U-Net具有更高的分割精度.在TTPLA输电线语义分割数据集的测试中,与原版U-Net相比,其IoU指标提高了2.32%,达到了71.45%.证明算法增强了图像中长距离输电线语义特征之间的联系,提高了输电线语义分割的完整性,提升了无人机的避障能力. 展开更多
关键词 深度学习 语义分割 无人机 输电线 自注意力 自监督
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部