【目的】通过对芝麻产量相关性状的全基因组关联分析,挖掘与产量性状关联的SNP位点及预测候选基因,为通过分子标记辅助选择育种等方式提高芝麻产量提供技术基础。【方法】以363份不同遗传背景和地理来源的芝麻种质资源构成的自然群体为...【目的】通过对芝麻产量相关性状的全基因组关联分析,挖掘与产量性状关联的SNP位点及预测候选基因,为通过分子标记辅助选择育种等方式提高芝麻产量提供技术基础。【方法】以363份不同遗传背景和地理来源的芝麻种质资源构成的自然群体为研究对象,调查2年2点4环境下8个产量相关性状(单株产量、单株蒴数、蒴粒数、千粒重、株高、主茎果轴长、始蒴高度和表观收获指数)的表型值,借助覆盖全基因组的42781个SNP标记,利用多位点SNP随机效应混合线性模型(multi-locus random-SNP-effect mixed linear model,mrMLM)对8个产量相关性状进行全基因组关联分析,检测与产量相关性状显著关联的SNP位点,并预测候选基因。【结果】在4个不同环境下,8个产量相关性状表现出广泛的表型变异,变异系数为6.51%—33.57%;相关性分析表明单株产量与单株蒴数、株高、主茎果轴长、表观收获指数呈极显著正相关;方差分析表明产量相关性状的基因型效应、环境效应、基因型与环境互作效应均达到了极显著水平。通过多位点全基因组关联分析共检测到210个与产量相关性状显著关联的SNP,在2018年南阳环境下检测到47个SNP,解释表型变异的1.63%—17.29%;在2019年南阳环境下检测到35个SNP,解释表型变异的1.94%—11.90%;在2018年平舆环境下检测到35个SNP,解释表型变异的2.15%—15.90%;在2019年平舆环境下检测到53个SNP,解释表型变异的1.25%—11.13%;在4个环境的综合BLUP条件下检测到75个SNP,解释表型变异的1.44%—13.58%。上述210个SNP涉及到175个位点,其中10个位点在3个及以上环境中被重复检测到。在这10个位点基因组区域内,共鉴定到214个候选基因,其中156个候选基因具有功能注释,主要涉及植物代谢、生物调控、生长发育等生物学过程。根据功能注释筛选出4个可能与芝麻产量相关的候选基因,其中SIN;006338编码1-氨�展开更多
文摘【目的】通过对芝麻产量相关性状的全基因组关联分析,挖掘与产量性状关联的SNP位点及预测候选基因,为通过分子标记辅助选择育种等方式提高芝麻产量提供技术基础。【方法】以363份不同遗传背景和地理来源的芝麻种质资源构成的自然群体为研究对象,调查2年2点4环境下8个产量相关性状(单株产量、单株蒴数、蒴粒数、千粒重、株高、主茎果轴长、始蒴高度和表观收获指数)的表型值,借助覆盖全基因组的42781个SNP标记,利用多位点SNP随机效应混合线性模型(multi-locus random-SNP-effect mixed linear model,mrMLM)对8个产量相关性状进行全基因组关联分析,检测与产量相关性状显著关联的SNP位点,并预测候选基因。【结果】在4个不同环境下,8个产量相关性状表现出广泛的表型变异,变异系数为6.51%—33.57%;相关性分析表明单株产量与单株蒴数、株高、主茎果轴长、表观收获指数呈极显著正相关;方差分析表明产量相关性状的基因型效应、环境效应、基因型与环境互作效应均达到了极显著水平。通过多位点全基因组关联分析共检测到210个与产量相关性状显著关联的SNP,在2018年南阳环境下检测到47个SNP,解释表型变异的1.63%—17.29%;在2019年南阳环境下检测到35个SNP,解释表型变异的1.94%—11.90%;在2018年平舆环境下检测到35个SNP,解释表型变异的2.15%—15.90%;在2019年平舆环境下检测到53个SNP,解释表型变异的1.25%—11.13%;在4个环境的综合BLUP条件下检测到75个SNP,解释表型变异的1.44%—13.58%。上述210个SNP涉及到175个位点,其中10个位点在3个及以上环境中被重复检测到。在这10个位点基因组区域内,共鉴定到214个候选基因,其中156个候选基因具有功能注释,主要涉及植物代谢、生物调控、生长发育等生物学过程。根据功能注释筛选出4个可能与芝麻产量相关的候选基因,其中SIN;006338编码1-氨�