We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In ...We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In our proposal,we use a dissipative TLS ensemble and an active cavity with effective gain.In the weak drive-field limit,the QPT can occur under the combined actions of the loss and gain of the system.Owing to the active cavity,the QPT behavior can be much differentiated even for a finite strength of the drive field on the TLS ensemble.Also,we propose to implement our scheme based on the dissipative nitrogen-vacancy(NV)centers coupled to an active optical cavity made from the gainmedium-doped silica.Furthermore,we show that the QPT can be measured by probing the transmission spectrum of the cavity embedding the ensemble of the NV centers.展开更多
We analyze the behavior of edge states in long-range(LR)interacting systems.In terms of lattice model Hamiltonian with the LR coupling,we determine analytically the condition of existence of edge states within the tra...We analyze the behavior of edge states in long-range(LR)interacting systems.In terms of lattice model Hamiltonian with the LR coupling,we determine analytically the condition of existence of edge states within the transfer matrix method(TMM).The expressions we obtain are general and hold for any choice of the LR hopping.The reason why edge states can appear is the transfer matrix in the bulk different from that in the boundary layers.Our predictions are in good agreement with numerical results by exact diagonalization.Our result is helpful in solving novel edge states in oneand two-dimensional(2D)superconductors with LR hopping and pairing.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934010,U1801661,U1930402,and 11847087)the National Key Research and Development Program of China(Grant No.2016YFA0301200)。
文摘We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In our proposal,we use a dissipative TLS ensemble and an active cavity with effective gain.In the weak drive-field limit,the QPT can occur under the combined actions of the loss and gain of the system.Owing to the active cavity,the QPT behavior can be much differentiated even for a finite strength of the drive field on the TLS ensemble.Also,we propose to implement our scheme based on the dissipative nitrogen-vacancy(NV)centers coupled to an active optical cavity made from the gainmedium-doped silica.Furthermore,we show that the QPT can be measured by probing the transmission spectrum of the cavity embedding the ensemble of the NV centers.
基金supported by the National Natural Science Foundation of China(Grant No.11847061)the Startup Program of Shanghai University of Engineering Science.
文摘We analyze the behavior of edge states in long-range(LR)interacting systems.In terms of lattice model Hamiltonian with the LR coupling,we determine analytically the condition of existence of edge states within the transfer matrix method(TMM).The expressions we obtain are general and hold for any choice of the LR hopping.The reason why edge states can appear is the transfer matrix in the bulk different from that in the boundary layers.Our predictions are in good agreement with numerical results by exact diagonalization.Our result is helpful in solving novel edge states in oneand two-dimensional(2D)superconductors with LR hopping and pairing.