针对光纤法布里-珀罗(F-P)压力传感器,建立了考虑热应力和残余气压的F-P腔长变化模型,进行了热应力和残余气压对传感器温度性能影响的理论分析。分析表明,热应力和残余气压的引入使F-P腔长改变量与温度的线性关系发生了变化,在外界施...针对光纤法布里-珀罗(F-P)压力传感器,建立了考虑热应力和残余气压的F-P腔长变化模型,进行了热应力和残余气压对传感器温度性能影响的理论分析。分析表明,热应力和残余气压的引入使F-P腔长改变量与温度的线性关系发生了变化,在外界施加100 k Pa压力,当腔内残余气压小于0.87 k Pa时,热应力起主要影响作用;当腔内残余气压大于0.87 k Pa时,残余气压起主要影响作用。制作了三种不同残余气压的光纤F-P压力传感器,在-20℃~70℃温度范围进行了实验研究,结果显示测量的腔长及其温度灵敏度随温度变化关系与理论分析基本一致。展开更多
为实现低损耗、抗弯曲的中红外激光传输,在3μm波段研究超低损耗空芯嵌套式反谐振无节点光纤,采用有限元法对空芯光纤的结构参数(管厚、包层毛细管外径、纤芯直径和嵌套管外径)进行数值仿真,并在3μm波段实现低至0.52 d B/km的光纤传输...为实现低损耗、抗弯曲的中红外激光传输,在3μm波段研究超低损耗空芯嵌套式反谐振无节点光纤,采用有限元法对空芯光纤的结构参数(管厚、包层毛细管外径、纤芯直径和嵌套管外径)进行数值仿真,并在3μm波段实现低至0.52 d B/km的光纤传输损耗。通过对空芯反谐振光纤和空芯嵌套式反谐振无节点光纤的弯曲损耗及泄漏损耗的对比研究,证明空芯嵌套式反谐振无节点光纤相比于空芯反谐振光纤在宽光谱范围内具有更低的传输损耗(损耗比最高可达22.87 d B)、更好的抗弯曲性能(弯曲半径为6.5 cm的损耗小于0.1 d B/m)。展开更多
As one of the greatest inventions in the 20 th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importanc...As one of the greatest inventions in the 20 th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importance in ultrafast lasers, which directly affect the output laser performances. Over the past decades, significant efforts have been made in the development of compact, controllable, repeatable, as well as integratable optical modulators(i.e., saturable absorbers). In this paper, we review the fundamentals of the most widely studied saturable absorbers, including semiconductor saturable absorber mirrors and low-dimensional nanomaterials. Then, different fabrication technologies for saturable absorbers and their ultrafast laser applications in a wide wavelength range are illustrated. Furthermore, challenges and perspectives for the future development of saturable absorbers are discussed and presented. The development of ultrafast lasers together with the continuous exploration of reliable saturable absorbers will open up new directions for the mass production of the nextgeneration optoelectronic devices.展开更多
Ultrafast pulse generation was demonstrated in thulium doped fiber laser mode locked by magnetron sputtering de- posited Sb2Te3 with the modulation depth, non-saturable loss, and saturable intensity of 38%, 31.2%, and...Ultrafast pulse generation was demonstrated in thulium doped fiber laser mode locked by magnetron sputtering de- posited Sb2Te3 with the modulation depth, non-saturable loss, and saturable intensity of 38%, 31.2%, and 3.3 MW/cm2, respectively. Stable soliton pulses emitting at 1930.07 nm were obtained with pulse duration of 1.24 ps, a 3-dB spectral bandwidth of 3.87 nm, an average output power of 130 mW, and signal-to-noise ratio (SNR) of 84 dB. To our knowledge, this is the first demonstration of Sb2Te3-based SA in fiber lasers at 2-p.m regime. Ultrafast pulse generation was demonstrated in thulium doped fiber laser mode locked by magnetron sputtering de- posited Sb2Te3 with the modulation depth, non-saturable loss, and saturable intensity of 38%, 31.2%, and 3.3 MW/cm2, respectively. Stable soliton pulses emitting at 1930.07 nm were obtained with pulse duration of 1.24 ps, a 3-dB spectral bandwidth of 3.87 nm, an average output power of 130 mW, and signal-to-noise ratio (SNR) of 84 dB. To our knowledge, this is the first demonstration of Sb2Te3-based SA in fiber lasers at 2-p.m regime.展开更多
文摘针对光纤法布里-珀罗(F-P)压力传感器,建立了考虑热应力和残余气压的F-P腔长变化模型,进行了热应力和残余气压对传感器温度性能影响的理论分析。分析表明,热应力和残余气压的引入使F-P腔长改变量与温度的线性关系发生了变化,在外界施加100 k Pa压力,当腔内残余气压小于0.87 k Pa时,热应力起主要影响作用;当腔内残余气压大于0.87 k Pa时,残余气压起主要影响作用。制作了三种不同残余气压的光纤F-P压力传感器,在-20℃~70℃温度范围进行了实验研究,结果显示测量的腔长及其温度灵敏度随温度变化关系与理论分析基本一致。
文摘为实现低损耗、抗弯曲的中红外激光传输,在3μm波段研究超低损耗空芯嵌套式反谐振无节点光纤,采用有限元法对空芯光纤的结构参数(管厚、包层毛细管外径、纤芯直径和嵌套管外径)进行数值仿真,并在3μm波段实现低至0.52 d B/km的光纤传输损耗。通过对空芯反谐振光纤和空芯嵌套式反谐振无节点光纤的弯曲损耗及泄漏损耗的对比研究,证明空芯嵌套式反谐振无节点光纤相比于空芯反谐振光纤在宽光谱范围内具有更低的传输损耗(损耗比最高可达22.87 d B)、更好的抗弯曲性能(弯曲半径为6.5 cm的损耗小于0.1 d B/m)。
基金supported by the National Natural Science Foundation of China (Nos.61905148,61775146,and 12074264)the Shenzhen Science and Technology Project (Nos.JCYJ20190808160205460,JCYJ20190808174201658,and JCYJ20190808141011530)。
文摘As one of the greatest inventions in the 20 th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importance in ultrafast lasers, which directly affect the output laser performances. Over the past decades, significant efforts have been made in the development of compact, controllable, repeatable, as well as integratable optical modulators(i.e., saturable absorbers). In this paper, we review the fundamentals of the most widely studied saturable absorbers, including semiconductor saturable absorber mirrors and low-dimensional nanomaterials. Then, different fabrication technologies for saturable absorbers and their ultrafast laser applications in a wide wavelength range are illustrated. Furthermore, challenges and perspectives for the future development of saturable absorbers are discussed and presented. The development of ultrafast lasers together with the continuous exploration of reliable saturable absorbers will open up new directions for the mass production of the nextgeneration optoelectronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775146,11704260,61405126,and 61605122)the Shenzhen Science and Technology Project(Grant Nos.JCYJ20160427105041864,JSGG20160429114438287,KQJSCX20160226194031,JCYJ20160422103744090,and JCY20150324141711695)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2016A030310049,2016A030310059,and2017A030310402)
文摘Ultrafast pulse generation was demonstrated in thulium doped fiber laser mode locked by magnetron sputtering de- posited Sb2Te3 with the modulation depth, non-saturable loss, and saturable intensity of 38%, 31.2%, and 3.3 MW/cm2, respectively. Stable soliton pulses emitting at 1930.07 nm were obtained with pulse duration of 1.24 ps, a 3-dB spectral bandwidth of 3.87 nm, an average output power of 130 mW, and signal-to-noise ratio (SNR) of 84 dB. To our knowledge, this is the first demonstration of Sb2Te3-based SA in fiber lasers at 2-p.m regime. Ultrafast pulse generation was demonstrated in thulium doped fiber laser mode locked by magnetron sputtering de- posited Sb2Te3 with the modulation depth, non-saturable loss, and saturable intensity of 38%, 31.2%, and 3.3 MW/cm2, respectively. Stable soliton pulses emitting at 1930.07 nm were obtained with pulse duration of 1.24 ps, a 3-dB spectral bandwidth of 3.87 nm, an average output power of 130 mW, and signal-to-noise ratio (SNR) of 84 dB. To our knowledge, this is the first demonstration of Sb2Te3-based SA in fiber lasers at 2-p.m regime.