Objective: To investigate the effects of panaxadiol saponins component (PDS-C) isolated from total saponins of panax ginseng on proliferation, differentiation and corresponding gone expression profile of megakaryoc...Objective: To investigate the effects of panaxadiol saponins component (PDS-C) isolated from total saponins of panax ginseng on proliferation, differentiation and corresponding gone expression profile of megakaryocytes. Methods: Bone marrow culture of colony forming assay of megakaryocytic progenitor cells (CFU-MK) was observed for the promoting proliferation mediated by PDS-C, and differentiation of megakaryocytic blasts caused by PDS-C was analyzed with flow cytometry in CHRF-288 and Meg-01 cells, as well as proliferation, differentiation-related genes expression profile and protein expression levels were detected by human gone expression microarray and western blot. Results: In response to PDS-C 10, 20 and 50 mg/L, CFU-MK from 10 human bone marrow samples was increased by 28.9± 2.7%, 41.0% ± 3.2% and 40.5% ± 2.6% over untreated control, respectively (P〈0.01, each). Flow cytometry analysis showed that PDS-C treated CHRF-288 cells and Meg-01 cells significantly increased in CD42b, CD41, TSP and CD36 positive ratio, respectively. PDS-C induced 29 genes up-regulated more than two-fold commonly in both cells detected by human expression microarray representing 4000 known genes. The protein expression levels of ZNF91, c-Fos, BTF3a, GATA-1, RGS2, NDRG2 and RUNX1 were increased with western blot in correspond to microarray results. Conclusion: PDS-C as an effective component for hematopoiesis, play the role to enhance proliferation and differentiation of megakaryocytes, also up-regulated expression of proliferation, differentiation-related genes and proteins in vitro. KEYWORDS panaxadiol saponins, megakaryocyte, gone expression profile, proliferation, differentiation展开更多
Objective: To investigate the effects of sodium copper chlorophyllin (SCC) on the proliferation, differentiation and immunomodulatory function of mesenchymal stem cells (MSCs) from mice with aplastic anemia. Meth...Objective: To investigate the effects of sodium copper chlorophyllin (SCC) on the proliferation, differentiation and immunomodulatory function of mesenchymal stem cells (MSCs) from mice with aplastic anemia. Methods: A mouse model of aplastic anemia was established by exposure of BALB/c mice to sublethal doses of 5.0 Gy Co60 γ radiation, followed by transplantation of 2 × 108 lymph node cells from DBA/2 donor mice within 4 h after radiation. Aplastic anemic BALB/c mice were randomly divided into six groups: the treated groups, which received 25, 50, or 100 mg/kg/day SCC, respectively; a positive control group treated with cyclosporine A (CsA); and an untreated model control group (model group); while, the non-irradiated mice as the normal control group. SCC or CsA were administered by gastrogavage for 20 days, starting on day 4 after irradiation. Peripheral blood cells were counted and colony-forming fibroblasts (CFU-F) in the bone marrow were assayed. The ability of MSCs to form calcium nodes after culture in osteoinductive medium was also observed. The immunosuppressive effect of MSCs on T lymphocytes was analyzed by enzyme-linked immunosorbent assay and flow cytometry, to evaluate the efficacy of SCC in mice with aplastic anemia. Results: Peripheral blood white cell and platelet counts were increased by medium and high SCC doses, compared with the untreated control. CFU-Fs were also increased compared with the untreated control, and the numbers of calcium nodes in MSCs in osteoinductive medium were elevated in response to SCC treatment. The percentage of Forkhead box protein 3 (FOXP3^+) T cells was increased in T celI-MSC cocultures, and the cytokine transforming growth factor 131 was up-regulated in SCC-treated groups. Conclusion: The results of this study suggest that SCC not only promotes the proliferation and differentiation of MSCs, but also improves their immunoregulatory capacity in mice with apiastic anemia.展开更多
基金Supported by National Natural Science Foundation of China(No.81373876)Zhejiang Provincial Natural Science Foundation(No.LY14H290004)Science and Technology Program of Zhejiang Province(No.2010C33098)
文摘Objective: To investigate the effects of panaxadiol saponins component (PDS-C) isolated from total saponins of panax ginseng on proliferation, differentiation and corresponding gone expression profile of megakaryocytes. Methods: Bone marrow culture of colony forming assay of megakaryocytic progenitor cells (CFU-MK) was observed for the promoting proliferation mediated by PDS-C, and differentiation of megakaryocytic blasts caused by PDS-C was analyzed with flow cytometry in CHRF-288 and Meg-01 cells, as well as proliferation, differentiation-related genes expression profile and protein expression levels were detected by human gone expression microarray and western blot. Results: In response to PDS-C 10, 20 and 50 mg/L, CFU-MK from 10 human bone marrow samples was increased by 28.9± 2.7%, 41.0% ± 3.2% and 40.5% ± 2.6% over untreated control, respectively (P〈0.01, each). Flow cytometry analysis showed that PDS-C treated CHRF-288 cells and Meg-01 cells significantly increased in CD42b, CD41, TSP and CD36 positive ratio, respectively. PDS-C induced 29 genes up-regulated more than two-fold commonly in both cells detected by human expression microarray representing 4000 known genes. The protein expression levels of ZNF91, c-Fos, BTF3a, GATA-1, RGS2, NDRG2 and RUNX1 were increased with western blot in correspond to microarray results. Conclusion: PDS-C as an effective component for hematopoiesis, play the role to enhance proliferation and differentiation of megakaryocytes, also up-regulated expression of proliferation, differentiation-related genes and proteins in vitro. KEYWORDS panaxadiol saponins, megakaryocyte, gone expression profile, proliferation, differentiation
基金Supported by Zhejiang Provincial Natural Science Foundation of China(No.Y207728 and No.Y2080036)Traditional Chinese Medicine Administration Bureau of Zhejiang Province, China(No.2008YA005)
文摘Objective: To investigate the effects of sodium copper chlorophyllin (SCC) on the proliferation, differentiation and immunomodulatory function of mesenchymal stem cells (MSCs) from mice with aplastic anemia. Methods: A mouse model of aplastic anemia was established by exposure of BALB/c mice to sublethal doses of 5.0 Gy Co60 γ radiation, followed by transplantation of 2 × 108 lymph node cells from DBA/2 donor mice within 4 h after radiation. Aplastic anemic BALB/c mice were randomly divided into six groups: the treated groups, which received 25, 50, or 100 mg/kg/day SCC, respectively; a positive control group treated with cyclosporine A (CsA); and an untreated model control group (model group); while, the non-irradiated mice as the normal control group. SCC or CsA were administered by gastrogavage for 20 days, starting on day 4 after irradiation. Peripheral blood cells were counted and colony-forming fibroblasts (CFU-F) in the bone marrow were assayed. The ability of MSCs to form calcium nodes after culture in osteoinductive medium was also observed. The immunosuppressive effect of MSCs on T lymphocytes was analyzed by enzyme-linked immunosorbent assay and flow cytometry, to evaluate the efficacy of SCC in mice with aplastic anemia. Results: Peripheral blood white cell and platelet counts were increased by medium and high SCC doses, compared with the untreated control. CFU-Fs were also increased compared with the untreated control, and the numbers of calcium nodes in MSCs in osteoinductive medium were elevated in response to SCC treatment. The percentage of Forkhead box protein 3 (FOXP3^+) T cells was increased in T celI-MSC cocultures, and the cytokine transforming growth factor 131 was up-regulated in SCC-treated groups. Conclusion: The results of this study suggest that SCC not only promotes the proliferation and differentiation of MSCs, but also improves their immunoregulatory capacity in mice with apiastic anemia.