针对传统的图卷积网络节点嵌入过程中接受邻域范围小的问题,本文提出了一种基于改进GraphSAGE算法的高光谱图像分类网络.首先,利用超像素分割算法对原始图像进行预处理,减少图节点的个数,既最大化保留了原始图像的局部拓扑结构信息,又...针对传统的图卷积网络节点嵌入过程中接受邻域范围小的问题,本文提出了一种基于改进GraphSAGE算法的高光谱图像分类网络.首先,利用超像素分割算法对原始图像进行预处理,减少图节点的个数,既最大化保留了原始图像的局部拓扑结构信息,又降低了算法的复杂度,缩短运算时间;其次,采用改进的GraphSAGE算法,对目标节点进行平均采样,选用平均聚合函数对邻居节点进行聚合,降低空间复杂度.在公开的高光谱图像数据集Pavia University和Kenndy Space Center上与相关模型进行对比,实验证明,基于改进GraphSAGE算法的高光谱图像分类网络可以取得较好的分类结果.展开更多
文摘针对传统的图卷积网络节点嵌入过程中接受邻域范围小的问题,本文提出了一种基于改进GraphSAGE算法的高光谱图像分类网络.首先,利用超像素分割算法对原始图像进行预处理,减少图节点的个数,既最大化保留了原始图像的局部拓扑结构信息,又降低了算法的复杂度,缩短运算时间;其次,采用改进的GraphSAGE算法,对目标节点进行平均采样,选用平均聚合函数对邻居节点进行聚合,降低空间复杂度.在公开的高光谱图像数据集Pavia University和Kenndy Space Center上与相关模型进行对比,实验证明,基于改进GraphSAGE算法的高光谱图像分类网络可以取得较好的分类结果.