期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于测井数据的砂岩型铀矿异常识别BP神经网络方法应用
被引量:
1
1
作者
康乾坤
路来君
尚
殷民
《科学技术与工程》
北大核心
2020年第9期3476-3484,共9页
为了快速有效的获取砂岩型铀矿矿集区铀矿异常分布信息,以砂岩型铀矿异常的测井响应特征为理论依据,利用BP神经网络强大的非线性映射和学习能力,以已知铀矿矿化层信息为学习样本,构建3层BP(back propagation)神经网络模型。对松辽盆地...
为了快速有效的获取砂岩型铀矿矿集区铀矿异常分布信息,以砂岩型铀矿异常的测井响应特征为理论依据,利用BP神经网络强大的非线性映射和学习能力,以已知铀矿矿化层信息为学习样本,构建3层BP(back propagation)神经网络模型。对松辽盆地大庆长垣南端某铀矿矿集区铀矿钻孔测井数据进行异常层和矿化层的识别提取,并将模型识别结果与已知矿化层信息进行分析对比。结果表明:BP神经网络模型识别准确率达86.55%,效果较好,矿化层的识别结果同已知矿化层信息重合度高,同常规的铀矿异常识别方法相比更加接近铀矿异常分布的形态。此方法能快速有效的获取未知孔的异常信息、降低人为解释工作带来的误差,具有较高的准确性,优势明显。BP神经网络技术应用于铀矿勘察工作中具有良好的前景。
展开更多
关键词
铀矿异常
BP神经网络
分类识别
测井响应
砂岩型铀矿
下载PDF
职称材料
题名
基于测井数据的砂岩型铀矿异常识别BP神经网络方法应用
被引量:
1
1
作者
康乾坤
路来君
尚
殷民
机构
吉林大学地球科学学院
出处
《科学技术与工程》
北大核心
2020年第9期3476-3484,共9页
基金
中国地质科学院委托项目(3S2170034422)。
文摘
为了快速有效的获取砂岩型铀矿矿集区铀矿异常分布信息,以砂岩型铀矿异常的测井响应特征为理论依据,利用BP神经网络强大的非线性映射和学习能力,以已知铀矿矿化层信息为学习样本,构建3层BP(back propagation)神经网络模型。对松辽盆地大庆长垣南端某铀矿矿集区铀矿钻孔测井数据进行异常层和矿化层的识别提取,并将模型识别结果与已知矿化层信息进行分析对比。结果表明:BP神经网络模型识别准确率达86.55%,效果较好,矿化层的识别结果同已知矿化层信息重合度高,同常规的铀矿异常识别方法相比更加接近铀矿异常分布的形态。此方法能快速有效的获取未知孔的异常信息、降低人为解释工作带来的误差,具有较高的准确性,优势明显。BP神经网络技术应用于铀矿勘察工作中具有良好的前景。
关键词
铀矿异常
BP神经网络
分类识别
测井响应
砂岩型铀矿
Keywords
uranium anomaly
BP neural network
classification and identification
logging response
sandstone-type uranium deposit
分类号
P631.64 [天文地球—地质矿产勘探]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于测井数据的砂岩型铀矿异常识别BP神经网络方法应用
康乾坤
路来君
尚
殷民
《科学技术与工程》
北大核心
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部