A new approach is provided to estimate the state of arbitrarily maneuvering target. In this approach a fuzzy compensator is used to tackle the uncertainty which results from the targets arbitrarily maneuvering. To des...A new approach is provided to estimate the state of arbitrarily maneuvering target. In this approach a fuzzy compensator is used to tackle the uncertainty which results from the targets arbitrarily maneuvering. To design the observer of the nonlinear system, the fuzzy T S model and the receding horizon control strategy are employed. Besides, the design depends on tracking the output error of the model. Compared with the technique used in other articles, the errors between the first estimated value and the true state value of the estimated variable are not strictly required. Numerical simulating results show that the proposed approach can estimate the states of the random maneuvering targets on line so as to obtain the exact tracking of the target.展开更多
文摘A new approach is provided to estimate the state of arbitrarily maneuvering target. In this approach a fuzzy compensator is used to tackle the uncertainty which results from the targets arbitrarily maneuvering. To design the observer of the nonlinear system, the fuzzy T S model and the receding horizon control strategy are employed. Besides, the design depends on tracking the output error of the model. Compared with the technique used in other articles, the errors between the first estimated value and the true state value of the estimated variable are not strictly required. Numerical simulating results show that the proposed approach can estimate the states of the random maneuvering targets on line so as to obtain the exact tracking of the target.