期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
稀疏先验引导CNN学习的SAR图像目标识别方法 被引量:5
1
作者 康志强 张思乾 +2 位作者 斯嘉 冷祥光 计科峰 《信号处理》 CSCD 北大核心 2023年第4期737-750,共14页
深度学习技术的应用给SAR图像目标识别带来了大幅度的性能提升,但其对实际应用中车辆目标局部部件的变化适应能力仍有待加强。利用数据内在先验知识,在高维语义特征中学习其内在的低维子空间结构,可以提升分类模型在车辆目标变体条件下... 深度学习技术的应用给SAR图像目标识别带来了大幅度的性能提升,但其对实际应用中车辆目标局部部件的变化适应能力仍有待加强。利用数据内在先验知识,在高维语义特征中学习其内在的低维子空间结构,可以提升分类模型在车辆目标变体条件下的泛化性能。本文基于目标特征的稀疏性,提出了一种稀疏先验引导卷积神经网络(Convolution Neural Network,CNN)学习的SAR目标识别方法(CNN-TDDL)。首先,该方法利用CNN提取SAR图像目标的高维语义特征。其次,通过稀疏先验引导模块,利用特征稀疏性,对目标特征内在的低维子空间结构进行学习。分类任务驱动的字典学习层(Task-Driven Dictionary Learning,TDDL)将目标特征的低维子空间以稀疏编码的形式表示,再利用非负弹性正则网增强了稀疏编码的稳定性,使稀疏编码不仅有效地表征目标的低维子空间结构,并且能够提取更具判别性的类别特征。基于运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)数据集以及仿真和实测配对和标记实验(Synthetic and Measured Paired and Labeled Experiment,SAMPLE)数据集的实验表明,相比于传统字典学习方法和典型深度学习方法,CNN-TDDL在MSTAR标准操作条件(Standard Operating Conditions,SOC)下识别精度提升0.85%~5.28%,型号识别精度提升3.97%以上,表现出更好的泛化性能。特征可视化分析表明稀疏先验引导模块显著提升了异类目标特征表示的可分性。 展开更多
关键词 合成孔径雷达 目标识别 卷积神经网络 稀疏先验 弹性正则网
下载PDF
一种基于散射特征增强的SAR目标电磁仿真图像质量提升方法
2
作者 张祥辉 斯嘉 +4 位作者 马晓杰 张思乾 孙浩 计科峰 陈珲 《信号处理》 CSCD 北大核心 2023年第9期1573-1586,共14页
现阶段深度学习算法在对合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别时,通常面临着实测数据部分样本缺失的情况,利用电磁仿真数据进行辅助识别是有效途径之一。然而,仿真和实测数据存在不可避免的差异,现有仿真图像质量提升方... 现阶段深度学习算法在对合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别时,通常面临着实测数据部分样本缺失的情况,利用电磁仿真数据进行辅助识别是有效途径之一。然而,仿真和实测数据存在不可避免的差异,现有仿真图像质量提升方法更关注仿真和实测图像整体风格的相似性,忽略了面向识别的目标散射特征的重要性。针对上述问题,本文提出了一种基于散射特征增强的SAR目标电磁仿真图像质量提升方法。该方法在循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)框架下,改进损失函数,一方面使用最小二乘损失函数替代交叉熵损失函数,避免了梯度消失,实现对目标纹理结构特征的迭代优化;另一方面引入MS-SSIM-L1损失函数,更好地保留生成图像的细节信息和结构轮廓,保持目标整体结构一致性,同时有效避免模型的过度学习。基于4类车辆目标仿真数据集和MSTAR实测数据集,利用目标轮廓、阴影轮廓和目标强度特征相似度指标,验证了本文方法增强了目标细节纹理和结构轮廓等散射特征。在此基础上,结合A-ConvNets网络开展了目标分类识别实验,相较于原始CycleGAN方法,本文方法在不同样本缺失条件下均提高了识别准确率。通过特征可视化,表明生成图像更接近实测图像的目标特征分布,验证了本文方法的有效性。 展开更多
关键词 合成孔径雷达图像 循环生成对抗网络 仿真图像 质量提升 目标识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部