期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv5的船舶多尺度SAR图像检测算法
被引量:
1
1
作者
李生辉
李晓飞
+1 位作者
宋
璋
晗
王必祥
《数据采集与处理》
CSCD
北大核心
2024年第1期120-131,共12页
针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-dir...
针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-directional feature pyramid network, BiFPN)提升网络多尺度特征融合能力,并在其自下而上的特征融合支路中,基于深度可分离卷积(Depthwise separable convolution, DSC)和通道MLP构建EC-MLP(Enhanced channel-MLP)模块,从而丰富语义信息,提供更充分的船舶目标上下文特征;引入全局注意力机制(Global attention mechanism, GAM),使网络对输入特征进行针对性提取并运算,减少网络的信息丢失;此外,使用SIoU损失函数进一步提高网络的训练收敛速度和检测精度。在SSDD和HRSID数据集上与其他8种方法(Faster R-CNN、Libra R-CNN、FCOS、YOLOv5s、PP-YOLOv2、YOLOX-s、PP-YOLOE-s和YOLOv7-tiny)进行对比实验。实验结果表明:改进后算法在SSDD数据集上的AP50达到了96.7%,在HRSID数据集上AP50达到了95.6%,优于对比方法。
展开更多
关键词
合成孔径雷达
船舶目标检测
双向特征金字塔网络
深度可分离卷积
全局注意力机制
下载PDF
职称材料
题名
基于改进YOLOv5的船舶多尺度SAR图像检测算法
被引量:
1
1
作者
李生辉
李晓飞
宋
璋
晗
王必祥
机构
南京邮电大学宽带无线通信技术教育部工程研究中心
出处
《数据采集与处理》
CSCD
北大核心
2024年第1期120-131,共12页
基金
江苏省重点研发计划(BE2016001-4)。
文摘
针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-directional feature pyramid network, BiFPN)提升网络多尺度特征融合能力,并在其自下而上的特征融合支路中,基于深度可分离卷积(Depthwise separable convolution, DSC)和通道MLP构建EC-MLP(Enhanced channel-MLP)模块,从而丰富语义信息,提供更充分的船舶目标上下文特征;引入全局注意力机制(Global attention mechanism, GAM),使网络对输入特征进行针对性提取并运算,减少网络的信息丢失;此外,使用SIoU损失函数进一步提高网络的训练收敛速度和检测精度。在SSDD和HRSID数据集上与其他8种方法(Faster R-CNN、Libra R-CNN、FCOS、YOLOv5s、PP-YOLOv2、YOLOX-s、PP-YOLOE-s和YOLOv7-tiny)进行对比实验。实验结果表明:改进后算法在SSDD数据集上的AP50达到了96.7%,在HRSID数据集上AP50达到了95.6%,优于对比方法。
关键词
合成孔径雷达
船舶目标检测
双向特征金字塔网络
深度可分离卷积
全局注意力机制
Keywords
synthetic aperture radar(SAR)
ship target detection
bi‑directional feature pyramid network(BiFPN)
depthwise separable convolution(DSC)
global attention mechanism(GAM)
分类号
TP753 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv5的船舶多尺度SAR图像检测算法
李生辉
李晓飞
宋
璋
晗
王必祥
《数据采集与处理》
CSCD
北大核心
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部