The performance of the Mel-Frequency Cepstrum Coefficients (MFCC) may be affected by (1) the number of filters, (2) the shape of filters, (3) the way in which filters are spaced, and (4) the way in which the power spe...The performance of the Mel-Frequency Cepstrum Coefficients (MFCC) may be affected by (1) the number of filters, (2) the shape of filters, (3) the way in which filters are spaced, and (4) the way in which the power spectrum is warped. In this paper, several compar- ison experiments are done to find a best implementation. The traditional MFCC calculation excludes the 0th coefficient for the reason that it is regarded as somewhat unreliable. According to the analysis and experiments, the authors find that it can be regarded as the generalized frequency band energy (FBE) and is hence useful, which results in the FBE-MFCC. The au- thors also propose a better analysis, namely the auto-regressive analysis, on the frame energy, which outperforms its 1st and/or 2nd order differential derivatives. Experiments with the '863' Speech Database show that, compared with the traditional MFCC with its corresponding auto- regressive analysis coefficients, the FBE-MFCC and the frame energy with their corresponding auto-regressive analysis coefficients form the best combination, reducing the Chinese syllable er- ror rate (CSER) by about 10%, while the FBE-MFCC with the corresponding auto-regressive analysis coefficients reduces CSER by 2.5%. Comparison experiments are also done with a quite casual Chinese speech database, named Chinese Annotated Spontaneous Speech (CASS) corpus. The FBE-MFCC can reduce the error rate by about 2.9% on an average.展开更多
The previously proposed syllable-synchronous network search (SSNS) algorithm plays a very important role in the word decoding of the continuous Chinese speech recognition and achieves satisfying performance. Several r...The previously proposed syllable-synchronous network search (SSNS) algorithm plays a very important role in the word decoding of the continuous Chinese speech recognition and achieves satisfying performance. Several related key factors that may affect the overall word decoding effect are carefully studied in this paper, including the perfecting of the vocabulary, the big-discount Turing re-estimating of the N-Gram probabilities, and the managing of the searching path buffers. Based on these discussions, corresponding approaches to improving the SSNS algorithm are proposed. Compared with the previous version of SSNS algorithm, the new version decreases the Chinese character error rate (CCER) in the word decoding by 42.1% across a database consisting of a large number of testing sentences (syllable strings).展开更多
文摘The performance of the Mel-Frequency Cepstrum Coefficients (MFCC) may be affected by (1) the number of filters, (2) the shape of filters, (3) the way in which filters are spaced, and (4) the way in which the power spectrum is warped. In this paper, several compar- ison experiments are done to find a best implementation. The traditional MFCC calculation excludes the 0th coefficient for the reason that it is regarded as somewhat unreliable. According to the analysis and experiments, the authors find that it can be regarded as the generalized frequency band energy (FBE) and is hence useful, which results in the FBE-MFCC. The au- thors also propose a better analysis, namely the auto-regressive analysis, on the frame energy, which outperforms its 1st and/or 2nd order differential derivatives. Experiments with the '863' Speech Database show that, compared with the traditional MFCC with its corresponding auto- regressive analysis coefficients, the FBE-MFCC and the frame energy with their corresponding auto-regressive analysis coefficients form the best combination, reducing the Chinese syllable er- ror rate (CSER) by about 10%, while the FBE-MFCC with the corresponding auto-regressive analysis coefficients reduces CSER by 2.5%. Comparison experiments are also done with a quite casual Chinese speech database, named Chinese Annotated Spontaneous Speech (CASS) corpus. The FBE-MFCC can reduce the error rate by about 2.9% on an average.
文摘The previously proposed syllable-synchronous network search (SSNS) algorithm plays a very important role in the word decoding of the continuous Chinese speech recognition and achieves satisfying performance. Several related key factors that may affect the overall word decoding effect are carefully studied in this paper, including the perfecting of the vocabulary, the big-discount Turing re-estimating of the N-Gram probabilities, and the managing of the searching path buffers. Based on these discussions, corresponding approaches to improving the SSNS algorithm are proposed. Compared with the previous version of SSNS algorithm, the new version decreases the Chinese character error rate (CCER) in the word decoding by 42.1% across a database consisting of a large number of testing sentences (syllable strings).