High-order harmonic generation(HHG)from an atom illuminated by a sinusoidally phase-modulated pulse is investigated by solving the time-dependent Schrödinger equation.The spectral shift that occurs in atomic HHG ...High-order harmonic generation(HHG)from an atom illuminated by a sinusoidally phase-modulated pulse is investigated by solving the time-dependent Schrödinger equation.The spectral shift that occurs in atomic HHG can be achieved easily using our laser pulse.It is shown that the photon energy of the generated harmonics is controllable within the range of 1 eV.The shift of the frequency peak position is rooted in the asymmetry of the rising and falling parts of the laser pulse.We also show that by varying the phase parameters in the frequency domain of the laser one can adjust and control the shift in atomic harmonic spectra.展开更多
We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology fo...We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11604119,11627807,11774129,11774131,11904120,11975012,and 91850114)the Outstanding Youth Project of Taizhou University(Grant No.2019JQ002)。
文摘High-order harmonic generation(HHG)from an atom illuminated by a sinusoidally phase-modulated pulse is investigated by solving the time-dependent Schrödinger equation.The spectral shift that occurs in atomic HHG can be achieved easily using our laser pulse.It is shown that the photon energy of the generated harmonics is controllable within the range of 1 eV.The shift of the frequency peak position is rooted in the asymmetry of the rising and falling parts of the laser pulse.We also show that by varying the phase parameters in the frequency domain of the laser one can adjust and control the shift in atomic harmonic spectra.
文摘We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.