This paper presents a modified regulated cascode (RGC) transimpedance amplifier (TIA) with a novel pre-equalized technique. The pre-equalized circuit employed the broadband series inductive Jr-network and Gin- boo...This paper presents a modified regulated cascode (RGC) transimpedance amplifier (TIA) with a novel pre-equalized technique. The pre-equalized circuit employed the broadband series inductive Jr-network and Gin- boosting technique. The introduction of this technique compensates the transferred signal at the input port of the TIA without an increase in power dissipation. Furthermore, a novel miller capacitance degeneration method is designed in the gain stage for further bandwidth improvement. The TIA is realized in UMC 0.18 μm CMOS technology and tested with an on-chip 0.3 pF capacitor to emulate a photodetector (PD). The measured transimpedance gain amounts to 57 dBf2 with a -3 dB bandwidth of about 8.2 GHz and consumes only 22 mW power from a single 1.8 V supply.展开更多
This paper describes a new approach for designing analog predistorters that can compensate for the nonlinear distortion of laser drivers in a radio-over-fiber (RoF) system. In contrast to previous works, this paper ...This paper describes a new approach for designing analog predistorters that can compensate for the nonlinear distortion of laser drivers in a radio-over-fiber (RoF) system. In contrast to previous works, this paper analyzes the transfer characteristics of CMOS transistors, by combining parallel currents of CMOS transistors in various W/L and negative bias voltages to realize the tunable analog predistortion function. The circuit is fabricated by a standard 0.18txm CMOS technology. The core circuit current consumption is only 15mA and the entire driver circuit works in a band-pass from 1 - 2.2GHz. Experimental results of two-tone tests have shown that with an analog predistortoer the IIP3 of the laser driver circuit has an improvement of 4.91 dB.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61036002,61474081)
文摘This paper presents a modified regulated cascode (RGC) transimpedance amplifier (TIA) with a novel pre-equalized technique. The pre-equalized circuit employed the broadband series inductive Jr-network and Gin- boosting technique. The introduction of this technique compensates the transferred signal at the input port of the TIA without an increase in power dissipation. Furthermore, a novel miller capacitance degeneration method is designed in the gain stage for further bandwidth improvement. The TIA is realized in UMC 0.18 μm CMOS technology and tested with an on-chip 0.3 pF capacitor to emulate a photodetector (PD). The measured transimpedance gain amounts to 57 dBf2 with a -3 dB bandwidth of about 8.2 GHz and consumes only 22 mW power from a single 1.8 V supply.
基金Supported by the National Natural Science Foundation of China(No.61036002)
文摘This paper describes a new approach for designing analog predistorters that can compensate for the nonlinear distortion of laser drivers in a radio-over-fiber (RoF) system. In contrast to previous works, this paper analyzes the transfer characteristics of CMOS transistors, by combining parallel currents of CMOS transistors in various W/L and negative bias voltages to realize the tunable analog predistortion function. The circuit is fabricated by a standard 0.18txm CMOS technology. The core circuit current consumption is only 15mA and the entire driver circuit works in a band-pass from 1 - 2.2GHz. Experimental results of two-tone tests have shown that with an analog predistortoer the IIP3 of the laser driver circuit has an improvement of 4.91 dB.