设X是Hausdorff局部凸线性拓扑空间,{s_n|n∈D}是X中的网,其中D是一定向集.定理1 设{x_n|n∈D}有W-lims_n=s_0,s_0∈X,则对于s_0的任一邻域σ,存在{s_n|n∈D}的某有限的凸组合sum from j=1 to m a_js_(nj)属于σ,其中a_j≥0,sum from j=...设X是Hausdorff局部凸线性拓扑空间,{s_n|n∈D}是X中的网,其中D是一定向集.定理1 设{x_n|n∈D}有W-lims_n=s_0,s_0∈X,则对于s_0的任一邻域σ,存在{s_n|n∈D}的某有限的凸组合sum from j=1 to m a_js_(nj)属于σ,其中a_j≥0,sum from j=1 to m a_j=1.定理2 设{s_n|n∈0}是x中的Cauchy网,且W-lims_n=s_0,则S—lims_n=s_0.定义局部凸线性拓扑空间中的任何一个平衡且吸收的凸闭集称为桶(Barred),若X中的每一个桶均为0的一个邻域,则称X为桶空间.展开更多
文摘设X是Hausdorff局部凸线性拓扑空间,{s_n|n∈D}是X中的网,其中D是一定向集.定理1 设{x_n|n∈D}有W-lims_n=s_0,s_0∈X,则对于s_0的任一邻域σ,存在{s_n|n∈D}的某有限的凸组合sum from j=1 to m a_js_(nj)属于σ,其中a_j≥0,sum from j=1 to m a_j=1.定理2 设{s_n|n∈0}是x中的Cauchy网,且W-lims_n=s_0,则S—lims_n=s_0.定义局部凸线性拓扑空间中的任何一个平衡且吸收的凸闭集称为桶(Barred),若X中的每一个桶均为0的一个邻域,则称X为桶空间.