用气相沉积法(CVD)和转移法制备了石墨烯,用超声分散及搅拌的方法分别制备了导电碳黑(SP)导电浆料,导电碳黑(SP)、碳纳米管(CNTs)复合导电浆料(SP/CNTs)及导电碳黑(SP)、碳纳米管(CNTs)和石墨烯(G)复合导电浆料(SP/CNTs/G),通过扫描电镜...用气相沉积法(CVD)和转移法制备了石墨烯,用超声分散及搅拌的方法分别制备了导电碳黑(SP)导电浆料,导电碳黑(SP)、碳纳米管(CNTs)复合导电浆料(SP/CNTs)及导电碳黑(SP)、碳纳米管(CNTs)和石墨烯(G)复合导电浆料(SP/CNTs/G),通过扫描电镜(SEM)、四探针测试、恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)等方法研究了导电剂对锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的表面形貌、电阻率和电化学性能的影响。结果表明:添加质量分数2%复合导电剂SP/CNTs/G的样品电阻率较小,0.2 C首次充放电比容量分别为201.93 m Ah·g^(–1)和180.29 m Ah·g^(–1),首次充放电效率为89.28%。3.0C循环5次后的放电比容量为161.45 m Ah·g^(–1),容量保持率仍有89.69%,1.0C循环50次后放电比容量为166.97 m Ah·g^(–1),容量保持率为96.65%,倍率和循环性能优良。展开更多
采用湿法球磨法制备了锂离子电池混合正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP).通过X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试和电化学阻抗谱测试(EIS)等方法研究对比了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2(NMC5...采用湿法球磨法制备了锂离子电池混合正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP).通过X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试和电化学阻抗谱测试(EIS)等方法研究对比了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2(NMC532)和LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP)的容量衰减机理.结果表明,循环50次和60 o C高温存储后,NMC532/LFP的容量保持率分别为97.80%、86.48%,其循环和高温存储性能较好.循环和高温存储后NMC532和NMC532/LFP的电荷传递阻抗Rct明显增大,但NMC532/LFP的Rct较小.NMC532和NMC532/LFP的I(003)/I(104)值都有所减小,但NMC532/LFP的I(003)/I(104)值比NMC532的大,即NMC532/LFP材料的阳离子混排现象有所改善.循环后NMC532、NMC532/LFP颗粒没有出现明显的表面开裂和链接断裂现象,但NMC532颗粒有部分发生粉化.高温储存后NMC532颗粒表面出现裂纹,且颗粒之间的链接断裂,NMC532/LFP颗粒表面出现轻微粉化.材料结构规整度下降,阳离子混排程度加剧,电荷传递阻抗增大是NMC532和NMC532/LFP容量衰减的主要原因.展开更多
采用KOH活化石墨烯,通过固相法制备了磷酸铁锂/碱活化石墨烯(LFP/CA-G)复合材料,通过SEM、Raman、XRD和电化学测试对复合材料的结构和性能进行表征,结果表明:通过固相法制备的LFP/CA-G复合材料稳定性较好,在1C倍率下循环50次的容量保持...采用KOH活化石墨烯,通过固相法制备了磷酸铁锂/碱活化石墨烯(LFP/CA-G)复合材料,通过SEM、Raman、XRD和电化学测试对复合材料的结构和性能进行表征,结果表明:通过固相法制备的LFP/CA-G复合材料稳定性较好,在1C倍率下循环50次的容量保持率为100%;LFP/CA-G复合材料的0.2C首次放电比容量为158.8m Ah/g,较磷酸铁锂/石墨烯(LFP/G)提高了3.1 m Ah/g;其3C倍率的放电比容量为139 m Ah/g,较LFP/G提高了7 m Ah/g。LFP/CA-G复合材料具有更好的可逆性,其阻抗更小。这是因为碱活化的石墨烯具有丰富的微孔,有利于缩短锂离子的迁移路径,减小了极化。展开更多
文摘用气相沉积法(CVD)和转移法制备了石墨烯,用超声分散及搅拌的方法分别制备了导电碳黑(SP)导电浆料,导电碳黑(SP)、碳纳米管(CNTs)复合导电浆料(SP/CNTs)及导电碳黑(SP)、碳纳米管(CNTs)和石墨烯(G)复合导电浆料(SP/CNTs/G),通过扫描电镜(SEM)、四探针测试、恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)等方法研究了导电剂对锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的表面形貌、电阻率和电化学性能的影响。结果表明:添加质量分数2%复合导电剂SP/CNTs/G的样品电阻率较小,0.2 C首次充放电比容量分别为201.93 m Ah·g^(–1)和180.29 m Ah·g^(–1),首次充放电效率为89.28%。3.0C循环5次后的放电比容量为161.45 m Ah·g^(–1),容量保持率仍有89.69%,1.0C循环50次后放电比容量为166.97 m Ah·g^(–1),容量保持率为96.65%,倍率和循环性能优良。
文摘采用湿法球磨法制备了锂离子电池混合正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP).通过X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试和电化学阻抗谱测试(EIS)等方法研究对比了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2(NMC532)和LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/LiFePO_4(NMC532/LFP)的容量衰减机理.结果表明,循环50次和60 o C高温存储后,NMC532/LFP的容量保持率分别为97.80%、86.48%,其循环和高温存储性能较好.循环和高温存储后NMC532和NMC532/LFP的电荷传递阻抗Rct明显增大,但NMC532/LFP的Rct较小.NMC532和NMC532/LFP的I(003)/I(104)值都有所减小,但NMC532/LFP的I(003)/I(104)值比NMC532的大,即NMC532/LFP材料的阳离子混排现象有所改善.循环后NMC532、NMC532/LFP颗粒没有出现明显的表面开裂和链接断裂现象,但NMC532颗粒有部分发生粉化.高温储存后NMC532颗粒表面出现裂纹,且颗粒之间的链接断裂,NMC532/LFP颗粒表面出现轻微粉化.材料结构规整度下降,阳离子混排程度加剧,电荷传递阻抗增大是NMC532和NMC532/LFP容量衰减的主要原因.
文摘采用KOH活化石墨烯,通过固相法制备了磷酸铁锂/碱活化石墨烯(LFP/CA-G)复合材料,通过SEM、Raman、XRD和电化学测试对复合材料的结构和性能进行表征,结果表明:通过固相法制备的LFP/CA-G复合材料稳定性较好,在1C倍率下循环50次的容量保持率为100%;LFP/CA-G复合材料的0.2C首次放电比容量为158.8m Ah/g,较磷酸铁锂/石墨烯(LFP/G)提高了3.1 m Ah/g;其3C倍率的放电比容量为139 m Ah/g,较LFP/G提高了7 m Ah/g。LFP/CA-G复合材料具有更好的可逆性,其阻抗更小。这是因为碱活化的石墨烯具有丰富的微孔,有利于缩短锂离子的迁移路径,减小了极化。