We study the ground states of attractive binary Bose-Einstein condensates with N particles,which are trapped in the steep potential wellsλV(x)inℝ2.We show that there exists a positive number N*such that if N>N*,th...We study the ground states of attractive binary Bose-Einstein condensates with N particles,which are trapped in the steep potential wellsλV(x)inℝ2.We show that there exists a positive number N*such that if N>N*,the system admits no ground state for anyλ>0.Moreover,there exist two positive numbers,M*andλ*(N),such that if N<M*,then for anyλ>λ*(N),the system admits at least one ground state.Asλ→∞,for any fixed N<M*,we give a detailed description for the limit behavior of both positive and semi-trivial ground states.展开更多
基金supported by NSFC(12075102 and 11971212)the Fundamental Research Funds for the Central Universities(lzujbky-2020-pd01)。
文摘We study the ground states of attractive binary Bose-Einstein condensates with N particles,which are trapped in the steep potential wellsλV(x)inℝ2.We show that there exists a positive number N*such that if N>N*,the system admits no ground state for anyλ>0.Moreover,there exist two positive numbers,M*andλ*(N),such that if N<M*,then for anyλ>λ*(N),the system admits at least one ground state.Asλ→∞,for any fixed N<M*,we give a detailed description for the limit behavior of both positive and semi-trivial ground states.