研究了CO_2浓度倍增对大豆(Glycine max L.,C_3植物)、黄瓜(Cucumis sativus L.,C_3植物)、谷子(Setaria italica (L.) Beauv.,一种不很典型的C_4植物)和玉米(Zea mays L.,C_4植物)叶片的叶绿素蛋白质复合物的影响。实验植物盆栽于聚乙...研究了CO_2浓度倍增对大豆(Glycine max L.,C_3植物)、黄瓜(Cucumis sativus L.,C_3植物)、谷子(Setaria italica (L.) Beauv.,一种不很典型的C_4植物)和玉米(Zea mays L.,C_4植物)叶片的叶绿素蛋白质复合物的影响。实验植物盆栽于聚乙烯薄膜(或玻璃)的开顶式培养室中。播种后对照室的CO_2浓度立即保持在大气浓度(350±10)×10^(-6)中,CO_2浓度倍增处理室则保持在(700±10)×10^(-6)下。研究结果表明,对于大豆、黄瓜和谷子,CO_2浓度倍增均使其PSⅡ捕光叶绿素a/b-蛋白质复合物(LHCⅡ)的聚合体态的量增多,单体态的量减少。但C_4植物玉米对CO_2浓度倍增没有这样的反应。作者认为在大豆等植物中,LHCⅡ的上述状态变化可能是植物的光合机构对长期高CO_2浓度的一种适应效应,这样能提高光合作用中光能的吸收、传递和转换的效率,并支持高效的光合碳素同化作用。展开更多
Large and well ordered two dimensional (2D) crystals of the light harvesting chlorophyll a/b protein complexes (LHC II) from cucumber and spinach chloroplasts were produced by the so called batch method. The two dimen...Large and well ordered two dimensional (2D) crystals of the light harvesting chlorophyll a/b protein complexes (LHC II) from cucumber and spinach chloroplasts were produced by the so called batch method. The two dimensional structures of these crystals were examined at about 1.5 nm resolution by electron microscopy and image processing. The projection maps showed that there were similar, but not identical, structure features between two different LHC II complexes. A comparison between 2D crystal formations of the two different LHC II complexes was done and some factors affecting 2D crystallization of the membrane proteins were analyzed. The relations of the structures of the LHC II complexes to their polypeptide components and Chl a/b ratio were also discussed.展开更多
文摘研究了CO_2浓度倍增对大豆(Glycine max L.,C_3植物)、黄瓜(Cucumis sativus L.,C_3植物)、谷子(Setaria italica (L.) Beauv.,一种不很典型的C_4植物)和玉米(Zea mays L.,C_4植物)叶片的叶绿素蛋白质复合物的影响。实验植物盆栽于聚乙烯薄膜(或玻璃)的开顶式培养室中。播种后对照室的CO_2浓度立即保持在大气浓度(350±10)×10^(-6)中,CO_2浓度倍增处理室则保持在(700±10)×10^(-6)下。研究结果表明,对于大豆、黄瓜和谷子,CO_2浓度倍增均使其PSⅡ捕光叶绿素a/b-蛋白质复合物(LHCⅡ)的聚合体态的量增多,单体态的量减少。但C_4植物玉米对CO_2浓度倍增没有这样的反应。作者认为在大豆等植物中,LHCⅡ的上述状态变化可能是植物的光合机构对长期高CO_2浓度的一种适应效应,这样能提高光合作用中光能的吸收、传递和转换的效率,并支持高效的光合碳素同化作用。
文摘Large and well ordered two dimensional (2D) crystals of the light harvesting chlorophyll a/b protein complexes (LHC II) from cucumber and spinach chloroplasts were produced by the so called batch method. The two dimensional structures of these crystals were examined at about 1.5 nm resolution by electron microscopy and image processing. The projection maps showed that there were similar, but not identical, structure features between two different LHC II complexes. A comparison between 2D crystal formations of the two different LHC II complexes was done and some factors affecting 2D crystallization of the membrane proteins were analyzed. The relations of the structures of the LHC II complexes to their polypeptide components and Chl a/b ratio were also discussed.