期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合注意力和残差聚合的图像超分辨率算法
被引量:
2
1
作者
姜
继
升
徐开雄
+1 位作者
李华锋
李凡
《光学技术》
CAS
CSCD
北大核心
2022年第6期731-741,共11页
为解决残差块间的层级特征利用不充分导致生成的图像结构扭曲、视觉模糊等问题,提出结合注意力和残差聚合的图像超分辨率重建算法。网络通过浅层特征聚合模块获取多尺度的特征并输入到残差聚合网络,采用渐进式融合策略从局部和全局两方...
为解决残差块间的层级特征利用不充分导致生成的图像结构扭曲、视觉模糊等问题,提出结合注意力和残差聚合的图像超分辨率重建算法。网络通过浅层特征聚合模块获取多尺度的特征并输入到残差聚合网络,采用渐进式融合策略从局部和全局两方面对各个残差块的特征进行聚合,以达到充分利用残差块层级特征的目的。为进一步增强特征表示,利用双重注意力机制分别从空间和通道来关注特征之间的相互依赖性。实验结果表明,与SRCNN、FSRCNN等方法相比,算法重建的图像结构清晰且细节信息丰富。
展开更多
关键词
超分辨率
残差聚合
注意力机制
层级特征
原文传递
题名
结合注意力和残差聚合的图像超分辨率算法
被引量:
2
1
作者
姜
继
升
徐开雄
李华锋
李凡
机构
昆明理工大学信息工程与自动化学院
云南省人工智能重点实验室
出处
《光学技术》
CAS
CSCD
北大核心
2022年第6期731-741,共11页
基金
国家自然科学基金项目(62161015)
云南省科技厅科技计划项目(基础研究专项)(202101AT070136)。
文摘
为解决残差块间的层级特征利用不充分导致生成的图像结构扭曲、视觉模糊等问题,提出结合注意力和残差聚合的图像超分辨率重建算法。网络通过浅层特征聚合模块获取多尺度的特征并输入到残差聚合网络,采用渐进式融合策略从局部和全局两方面对各个残差块的特征进行聚合,以达到充分利用残差块层级特征的目的。为进一步增强特征表示,利用双重注意力机制分别从空间和通道来关注特征之间的相互依赖性。实验结果表明,与SRCNN、FSRCNN等方法相比,算法重建的图像结构清晰且细节信息丰富。
关键词
超分辨率
残差聚合
注意力机制
层级特征
Keywords
super-resolution
residual aggregation
attention mechanism
hierarchical features
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
结合注意力和残差聚合的图像超分辨率算法
姜
继
升
徐开雄
李华锋
李凡
《光学技术》
CAS
CSCD
北大核心
2022
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部