设D(n)表示方程n=p1+p2的解数,其中p1,p2为奇素数,若D(n)>0,则我们称n为偶数G o ldbach数.主要目的是利用初等和解析方法从两个不同的角度来研究偶数G o ldbach数的均值性质,并给出了两个相同的渐近公式,从而为进一步证明偶数G o ldb...设D(n)表示方程n=p1+p2的解数,其中p1,p2为奇素数,若D(n)>0,则我们称n为偶数G o ldbach数.主要目的是利用初等和解析方法从两个不同的角度来研究偶数G o ldbach数的均值性质,并给出了两个相同的渐近公式,从而为进一步证明偶数G o ldbach猜想的正确性提供了有力的证据.展开更多
It is difficult to study the mean value properties of the higher-Kloosterman sums S(m,n,q;k) for any positive integer k.In this paper,the fourth power mean of this exponential sums is studied by combining congruence...It is difficult to study the mean value properties of the higher-Kloosterman sums S(m,n,q;k) for any positive integer k.In this paper,the fourth power mean of this exponential sums is studied by combining congruence theorey with the analytic method,and an interesting asymptotic formula for it is obtained.The new result is an important generalization and improvement of the previous.展开更多
文摘设D(n)表示方程n=p1+p2的解数,其中p1,p2为奇素数,若D(n)>0,则我们称n为偶数G o ldbach数.主要目的是利用初等和解析方法从两个不同的角度来研究偶数G o ldbach数的均值性质,并给出了两个相同的渐近公式,从而为进一步证明偶数G o ldbach猜想的正确性提供了有力的证据.
基金Project supported by the Special Foundation for Excellent Young Teacher to Scientific Research (Grant No.2007GQS0142)the Innovation Foundation of Shanghai University
文摘It is difficult to study the mean value properties of the higher-Kloosterman sums S(m,n,q;k) for any positive integer k.In this paper,the fourth power mean of this exponential sums is studied by combining congruence theorey with the analytic method,and an interesting asymptotic formula for it is obtained.The new result is an important generalization and improvement of the previous.