期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习与医学先验知识的超声心动图切片识别
被引量:
2
1
作者
唐
涔
轩
王晓东
姚宇
《计算机应用》
CSCD
北大核心
2017年第A01期211-214,共4页
针对传统机器学习方法在围术期食管超声心动图(TEE)上进行切片识别时识别精度不够高和模型不能端到端的问题,提出了一种基于深度学习与医学先验的端到端切片识别方法。首先,提取TEE超声切片上的切片角度信息训练一个小型卷积神经网络(C...
针对传统机器学习方法在围术期食管超声心动图(TEE)上进行切片识别时识别精度不够高和模型不能端到端的问题,提出了一种基于深度学习与医学先验的端到端切片识别方法。首先,提取TEE超声切片上的切片角度信息训练一个小型卷积神经网络(CNN)进行角度分类,获取分类结果即医学先验概率;然后,对整个TEE超声切片成像区域训练一个大型深度学习网络模型进行切片分类,获取验证前分类结果,即条件概率;最后通过贝叶斯方法校验获取最终的识别结果。实验结果表明,与传统方法相比结合深度学习与医学先验的切片识别方法极大地提高了TEE切片识别的精度。
展开更多
关键词
超声心动图
深度学习
卷积神经网络
医学先验
贝叶斯方法
下载PDF
职称材料
题名
基于深度学习与医学先验知识的超声心动图切片识别
被引量:
2
1
作者
唐
涔
轩
王晓东
姚宇
机构
中国科学院成都计算机应用研究所
中国科学院大学
出处
《计算机应用》
CSCD
北大核心
2017年第A01期211-214,共4页
基金
中国科学院西部之光人才培养计划项目
文摘
针对传统机器学习方法在围术期食管超声心动图(TEE)上进行切片识别时识别精度不够高和模型不能端到端的问题,提出了一种基于深度学习与医学先验的端到端切片识别方法。首先,提取TEE超声切片上的切片角度信息训练一个小型卷积神经网络(CNN)进行角度分类,获取分类结果即医学先验概率;然后,对整个TEE超声切片成像区域训练一个大型深度学习网络模型进行切片分类,获取验证前分类结果,即条件概率;最后通过贝叶斯方法校验获取最终的识别结果。实验结果表明,与传统方法相比结合深度学习与医学先验的切片识别方法极大地提高了TEE切片识别的精度。
关键词
超声心动图
深度学习
卷积神经网络
医学先验
贝叶斯方法
Keywords
Trans Esophageal Echocardiography(TEE)
deep learning
Convolutional Neural Network(CNN)
priori medicine
Bayes method
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习与医学先验知识的超声心动图切片识别
唐
涔
轩
王晓东
姚宇
《计算机应用》
CSCD
北大核心
2017
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部