A fully standard CMOS integrated strained Si-channel NMOSFET has been demonstrated. By adjusting the thickness of graded SiGe, modifying the channel doping concentration, changing the Ge fraction of the relaxed SiGe l...A fully standard CMOS integrated strained Si-channel NMOSFET has been demonstrated. By adjusting the thickness of graded SiGe, modifying the channel doping concentration, changing the Ge fraction of the relaxed SiGe layer and forming a p-well by multiple implantation technology, a surface strained Si-channel NMOSFET was fabricated, of which the low field mobility was enhanced by 140%, compared with the bulk-Si control device. Strained NMOSFET and PMOSFET were used to fabricate a strained CMOS inverter based on a SiGe virtual substrate. Test results indicated that the strained CMOS converter had a drain leakage current much lower than the Si devices, and the device exhibited wonderful on/off-state voltage transmission characteristics.展开更多
基金supposed by the National Basic Research Program of Chinasupposed by the State Key Laboratory of Electronic Thin Films and Integrated Devices,UESTCthe Science and Technology on Analog Integrated Circuit Laboratory,CETC
文摘A fully standard CMOS integrated strained Si-channel NMOSFET has been demonstrated. By adjusting the thickness of graded SiGe, modifying the channel doping concentration, changing the Ge fraction of the relaxed SiGe layer and forming a p-well by multiple implantation technology, a surface strained Si-channel NMOSFET was fabricated, of which the low field mobility was enhanced by 140%, compared with the bulk-Si control device. Strained NMOSFET and PMOSFET were used to fabricate a strained CMOS inverter based on a SiGe virtual substrate. Test results indicated that the strained CMOS converter had a drain leakage current much lower than the Si devices, and the device exhibited wonderful on/off-state voltage transmission characteristics.