采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi_(1-x)Fe_(x)VO_4(x=0,0.05,0.10,0.25,0.40)薄膜,表征了其结构、形貌、光学以及光电化学方面的性质.结果表明,掺入Fe后Bi_(1-x)Fe_(x)VO_(4)薄膜的光电流密度与BiVO_(4)薄膜相比...采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi_(1-x)Fe_(x)VO_4(x=0,0.05,0.10,0.25,0.40)薄膜,表征了其结构、形貌、光学以及光电化学方面的性质.结果表明,掺入Fe后Bi_(1-x)Fe_(x)VO_(4)薄膜的光电流密度与BiVO_(4)薄膜相比均有所提高,其中25%Fe-BiVO_(4)薄膜表现出最优的光电化学性能.在0.1 mol/L磷酸缓冲溶液(pH=7.0)中,1.23 V(vs.RHE)电势下25%Fe-BiVO_(4)薄膜的光电流密度为0.50 m A/cm~2,与BiVO_(4)薄膜的0.15m A/cm^(2)相比提高了3倍多.结合X射线衍射(XRD)、拉曼光谱(Raman)和X射线光电子能谱(XPS)表征结果证实Fe~(3+)以FeVO_(4)的形式存在于Bi_(1-x)Fe_(x)VO_(4)薄膜中,形成了BiVO_(4)/FeVO_(4)复合物薄膜.紫外-可见光谱(UV-Vis)结果显示,所有Bi_(1-x)Fe_(x)VO_4薄膜的禁带宽度均为2.4~2.5 e V.25%Fe-BiVO_(4)薄膜光电化学性能的提升主要归因于光生载流子转移效率(η_(trans))和分离效率(η_(sep))的提高.能级结构图表明,BiVO_(4)和FeVO_(4)之间可以形成TypeⅡ型能级结构排列,可以促进光生载流子的分离与转移,是25%Fe-BiVO_(4)薄膜光电化学性能提升的内在机理.展开更多
文摘采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi_(1-x)Fe_(x)VO_4(x=0,0.05,0.10,0.25,0.40)薄膜,表征了其结构、形貌、光学以及光电化学方面的性质.结果表明,掺入Fe后Bi_(1-x)Fe_(x)VO_(4)薄膜的光电流密度与BiVO_(4)薄膜相比均有所提高,其中25%Fe-BiVO_(4)薄膜表现出最优的光电化学性能.在0.1 mol/L磷酸缓冲溶液(pH=7.0)中,1.23 V(vs.RHE)电势下25%Fe-BiVO_(4)薄膜的光电流密度为0.50 m A/cm~2,与BiVO_(4)薄膜的0.15m A/cm^(2)相比提高了3倍多.结合X射线衍射(XRD)、拉曼光谱(Raman)和X射线光电子能谱(XPS)表征结果证实Fe~(3+)以FeVO_(4)的形式存在于Bi_(1-x)Fe_(x)VO_(4)薄膜中,形成了BiVO_(4)/FeVO_(4)复合物薄膜.紫外-可见光谱(UV-Vis)结果显示,所有Bi_(1-x)Fe_(x)VO_4薄膜的禁带宽度均为2.4~2.5 e V.25%Fe-BiVO_(4)薄膜光电化学性能的提升主要归因于光生载流子转移效率(η_(trans))和分离效率(η_(sep))的提高.能级结构图表明,BiVO_(4)和FeVO_(4)之间可以形成TypeⅡ型能级结构排列,可以促进光生载流子的分离与转移,是25%Fe-BiVO_(4)薄膜光电化学性能提升的内在机理.