期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
北京市出租车OD流多尺度空间预测深度重力模型及其可解释性研究
1
作者 李欣然 贺日兴 +4 位作者 姜超 靳鑫 唐宗 龙伟 邓悦 《地球信息科学学报》 EI CSCD 北大核心 2024年第6期1390-1406,共17页
准确预测城市内部OD流对于优化城市交通运行效率、提高资源利用率以及促进城市可持续性发展具有重要作用。现有研究大多基于单一尺度利用地理位置之间大量的历史流量来预测未来的流量,尚未有研究充分探究不同空间尺度下OD流预测可能存... 准确预测城市内部OD流对于优化城市交通运行效率、提高资源利用率以及促进城市可持续性发展具有重要作用。现有研究大多基于单一尺度利用地理位置之间大量的历史流量来预测未来的流量,尚未有研究充分探究不同空间尺度下OD流预测可能存在的重要特征或建模精度差异等问题。本研究以北京市出租车轨迹为例,采用深度重力模型(Deep Gravity)对不同空间尺度下的轨迹OD流进行预测。同时,引入SHAP值(SHapley Additive exPlanations)揭示不同尺度下影响OD流预测建模的重要特征。结果表明:①相比于重力模型和辐射模型,街道尺度下深度重力模型的OD流预测精度最高(CPC值高达0.83),且成功捕捉到了北京市早晚高峰时段的OD流网络整体结构,呈现出“环形散射状”特征;②在本研究所选各空间尺度下,对OD流预测精度影响最大的4个特征均为O、D点之间的出行距离,O、D点周围公司企业数量、餐饮服务数量以及购物服务数量;③同一特征对OD流预测模型的局部影响不同于全局,如科教文化和体育休闲类POI在全局尺度下对模型影响较小,但在局部尺度下却表现出极大的影响。 展开更多
关键词 城市内部流动 出租车轨迹数据 OD流预测 多尺度 深度重力模型 可解释深度学习 SHAP可解释性 POI兴趣点
原文传递
顾及道路权重的图卷积犯罪时空预测模型 被引量:2
2
作者 贺日兴 唐宗 +5 位作者 姜超 林艳 陆宇梅 李欣然 龙伟 邓悦 《地球信息科学学报》 EI CSCD 北大核心 2023年第10期1986-1999,共14页
传统的犯罪地理和犯罪时空预测方法主要是以警务辖区或格网为基本单元,分析结果不利于指导精细化的巡防警力规划部署。基于深度学习的图神经网络方法可以自然地与微观尺度下的路网拓扑结构相结合,实现道路尺度下的精细犯罪预测,但现有... 传统的犯罪地理和犯罪时空预测方法主要是以警务辖区或格网为基本单元,分析结果不利于指导精细化的巡防警力规划部署。基于深度学习的图神经网络方法可以自然地与微观尺度下的路网拓扑结构相结合,实现道路尺度下的精细犯罪预测,但现有方法鲜有考虑道路权重对预测结果的影响。本文通过引入道路通达度和距离衰减因子,构建了一种顾及道路权重的图卷积犯罪时空预测模型(Road Weighted Spatio-Temporal Graph Convolutional Network,RW-STGCN),并利用芝加哥2016—2017年街面盗窃犯罪数据对模型进行评估。结果表明:(1)与未考虑道路权重的时空图卷积模型相比,RW-STGCN模型命中率在不同的路网覆盖比例下(1%、5%、10%、20%)的提升均在6.5%以上,且随着覆盖比例的下降,模型命中率的提升更为显著,最大提升超过了50%;(2)模型消融性实验表明,同时考虑2种道路权重的模型比仅考虑距离衰减权重或道路通达度权重单个因子的模型预测性能提升更为明显,命中率最大提升了12.9%。本研究构建的RW-STGCN模型有助于街面类犯罪预测,可为警务部门基于路网进行科学巡逻防控规划与警力部署提供辅助决策支持,此外还可用于以道路作为分析单元的城市计算问题研究。 展开更多
关键词 街面犯罪 时空预测 图卷积神经网络 道路权重 空间句法 犯罪预测 预测性警务
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部