We derive a simple ionization rate formula for the ground state of a hydrogen atom in the velocity gauge under the conditions:ω〈〈1 a.u.(a.u.is short for atomic unit) and γ〈〈1(ω is the laser frequency and y ...We derive a simple ionization rate formula for the ground state of a hydrogen atom in the velocity gauge under the conditions:ω〈〈1 a.u.(a.u.is short for atomic unit) and γ〈〈1(ω is the laser frequency and y is the Keldysh parameter).Comparisons are made among the different versions of the Keldysh-Faisal-Reiss(KFR) theory.The numerical study shows that with considering the quasi-classical(WKB) Coulomb correction in the final state of the ionized electron,the photoionization rate is enhanced compared with without considering the Coulomb correction,and the Reiss theory with the WKB Coulomb correction gives the correct result in the tunneling regime.Our concise formula of the ionization rate may provide an insight into the ionization mechanism for the ground state of a hydrogen atom.展开更多
We derive a general ionization rate formula for the system of diatomic molecules in the velocity gauge. A more concise expression of the photoionization rate in the tunnel region is obtained for the first time. Compar...We derive a general ionization rate formula for the system of diatomic molecules in the velocity gauge. A more concise expression of the photoionization rate in the tunnel region is obtained for the first time. Comparisons are made among the different versions of strong-field approximation. The numerical study shows that the ionization rate in the velocity gauge is underestimated by a few orders compared with that in the length gauge. Our simple formula of ionization rate may provide an insight into the ionization mechanism for the system of diatomic molecules.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274149 and 11304185)the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology,China(Grant No.F12-254-1-00)
文摘We derive a simple ionization rate formula for the ground state of a hydrogen atom in the velocity gauge under the conditions:ω〈〈1 a.u.(a.u.is short for atomic unit) and γ〈〈1(ω is the laser frequency and y is the Keldysh parameter).Comparisons are made among the different versions of the Keldysh-Faisal-Reiss(KFR) theory.The numerical study shows that with considering the quasi-classical(WKB) Coulomb correction in the final state of the ionized electron,the photoionization rate is enhanced compared with without considering the Coulomb correction,and the Reiss theory with the WKB Coulomb correction gives the correct result in the tunneling regime.Our concise formula of the ionization rate may provide an insight into the ionization mechanism for the ground state of a hydrogen atom.
基金supported by the National Natural Science Foundation of China(Grant No.11274149)the Natural Science Foundation of Liaoning Province,China(Grant No.20121032)
文摘We derive a general ionization rate formula for the system of diatomic molecules in the velocity gauge. A more concise expression of the photoionization rate in the tunnel region is obtained for the first time. Comparisons are made among the different versions of strong-field approximation. The numerical study shows that the ionization rate in the velocity gauge is underestimated by a few orders compared with that in the length gauge. Our simple formula of ionization rate may provide an insight into the ionization mechanism for the system of diatomic molecules.