目的:建立一种无损、快速高效的稻谷水分含量检测方法。方法:研究收集了不同年份的稻谷样品161份,运用近红外光谱结合化学计量学方法,通过剔除异常光谱和光谱预处理,采用偏最小二乘法建立稻谷水分含量预测模型。结果:采用主成分分析结...目的:建立一种无损、快速高效的稻谷水分含量检测方法。方法:研究收集了不同年份的稻谷样品161份,运用近红外光谱结合化学计量学方法,通过剔除异常光谱和光谱预处理,采用偏最小二乘法建立稻谷水分含量预测模型。结果:采用主成分分析结合马氏距离的方法剔除异常光谱样品15个,最佳的光谱预处理方式为消除常数偏移量。训练集建立的预测模型(R_(CAL)^(2))为0.9943,模型标准偏差(RMSEC)为0.21%,模型交叉验证决定系数(R_(CV)^(2))为0.9936,模型交叉验证标准偏差(RMSECV)为0.32%,表明预测模型交叉验证预测样品水分含量准确度高。用验证集样品检验预测模型,模型验证集验证决定系数R 2 VA L为0.9801,模型验证集验证标准偏差(RMSEP)值为0.36%,相对分析误差(RPD)值为7.14,表明预测模型对未知样品的预测准确度高。验证集样品实测值与预测值均值方程T检验结果P值(双侧)为0.879,验证集样品实测值与预测值之间差异不显著,表明预测模型的预测结果可信度高,验证集样品预测值与实测值的误差在±1%,且90%以上的验证集样品其预测值与实测值的误差都在±0.5%以内。结论:建立的稻谷水分预测模型可以实现收储稻谷的无损、快速、准确检测。展开更多
为建立一种无损快速检测百香果糖度的技术,以百香果为研究对象,利用近红外光谱技术,并结合联合区间偏最小二乘算法和竞争适应重加权采样算法对近红外光谱进行特征波长筛选,采用偏最小二乘法和支持向量机方法建立百香果糖度预测模型。结...为建立一种无损快速检测百香果糖度的技术,以百香果为研究对象,利用近红外光谱技术,并结合联合区间偏最小二乘算法和竞争适应重加权采样算法对近红外光谱进行特征波长筛选,采用偏最小二乘法和支持向量机方法建立百香果糖度预测模型。结果表明:采用多元线性回归方法建立的模型优于多元非线性回归方法建立的模型,联合区间偏最小二乘算法和竞争适应重加权采样算法筛选出的特征波长点数为67个,占全光谱的2.90%,预测模型的相关系数R2c为0.9727,校正集预测均方根误差(root mean square error of calibration,RMSEC)值为0.3338,验证集的相关系数R2p为0.9672,验证集预测均方根误差(root mean square error of prediction,RMSEP)值为0.3660,模型相对分析误差(relative prediction deviation,RPD)为4.5066。研究结果能够实现百香果糖度的无损快速检测,并且可以将百香果糖度无损检测便携检设备中的模型进行简化。展开更多
文摘目的:建立一种无损、快速高效的稻谷水分含量检测方法。方法:研究收集了不同年份的稻谷样品161份,运用近红外光谱结合化学计量学方法,通过剔除异常光谱和光谱预处理,采用偏最小二乘法建立稻谷水分含量预测模型。结果:采用主成分分析结合马氏距离的方法剔除异常光谱样品15个,最佳的光谱预处理方式为消除常数偏移量。训练集建立的预测模型(R_(CAL)^(2))为0.9943,模型标准偏差(RMSEC)为0.21%,模型交叉验证决定系数(R_(CV)^(2))为0.9936,模型交叉验证标准偏差(RMSECV)为0.32%,表明预测模型交叉验证预测样品水分含量准确度高。用验证集样品检验预测模型,模型验证集验证决定系数R 2 VA L为0.9801,模型验证集验证标准偏差(RMSEP)值为0.36%,相对分析误差(RPD)值为7.14,表明预测模型对未知样品的预测准确度高。验证集样品实测值与预测值均值方程T检验结果P值(双侧)为0.879,验证集样品实测值与预测值之间差异不显著,表明预测模型的预测结果可信度高,验证集样品预测值与实测值的误差在±1%,且90%以上的验证集样品其预测值与实测值的误差都在±0.5%以内。结论:建立的稻谷水分预测模型可以实现收储稻谷的无损、快速、准确检测。
文摘为建立一种无损快速检测百香果糖度的技术,以百香果为研究对象,利用近红外光谱技术,并结合联合区间偏最小二乘算法和竞争适应重加权采样算法对近红外光谱进行特征波长筛选,采用偏最小二乘法和支持向量机方法建立百香果糖度预测模型。结果表明:采用多元线性回归方法建立的模型优于多元非线性回归方法建立的模型,联合区间偏最小二乘算法和竞争适应重加权采样算法筛选出的特征波长点数为67个,占全光谱的2.90%,预测模型的相关系数R2c为0.9727,校正集预测均方根误差(root mean square error of calibration,RMSEC)值为0.3338,验证集的相关系数R2p为0.9672,验证集预测均方根误差(root mean square error of prediction,RMSEP)值为0.3660,模型相对分析误差(relative prediction deviation,RPD)为4.5066。研究结果能够实现百香果糖度的无损快速检测,并且可以将百香果糖度无损检测便携检设备中的模型进行简化。