The influence of feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power...The influence of feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power ratio, different feedback levels are obtained. Three distinct regimes of polarized optical feedback effects are found and defined as regimes Ⅰ, Ⅱ and Ⅲ The feedback level boundaries among the regimes are acquired experimentally. The theoretical analysis is presented to be in good agreement with the experimental results.展开更多
This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial lin...This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system.展开更多
Birefringence-Zeeman dual frequency lasers are capable of producing frequency difference from several kilohertz to hundreds of megahertz, but the precision of giving and stabilizing of the beat frequency still needs i...Birefringence-Zeeman dual frequency lasers are capable of producing frequency difference from several kilohertz to hundreds of megahertz, but the precision of giving and stabilizing of the beat frequency still needs improvement to the range of ±200 kHz. We design a new elastic force-exerting device comprised of the bottom part, two arms and two pieces of force-exerting sheets. The frequency difference smoothly tuning is realized with this device in a large range of 2 MHz to 20 MHz. Power-balance frequency stabilization system is used to investigate characters of the temperature, frequency difference and laser power. The precision of the frequency difference has reach up to ±100 kHz after system temperature balance. Analyses of the laser frequency difference and power character are carried out.展开更多
基金Supported by Key Project of the National Natural Science Foundation of China under Grant No 60438010.
文摘The influence of feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power ratio, different feedback levels are obtained. Three distinct regimes of polarized optical feedback effects are found and defined as regimes Ⅰ, Ⅱ and Ⅲ The feedback level boundaries among the regimes are acquired experimentally. The theoretical analysis is presented to be in good agreement with the experimental results.
基金supported by the National Natural Science Foundation of China (Grant No 60437010)
文摘This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system.
基金Supported by the National Natural Science Foundation of China under Grant No 50575110
文摘Birefringence-Zeeman dual frequency lasers are capable of producing frequency difference from several kilohertz to hundreds of megahertz, but the precision of giving and stabilizing of the beat frequency still needs improvement to the range of ±200 kHz. We design a new elastic force-exerting device comprised of the bottom part, two arms and two pieces of force-exerting sheets. The frequency difference smoothly tuning is realized with this device in a large range of 2 MHz to 20 MHz. Power-balance frequency stabilization system is used to investigate characters of the temperature, frequency difference and laser power. The precision of the frequency difference has reach up to ±100 kHz after system temperature balance. Analyses of the laser frequency difference and power character are carried out.