Nanowire stiction is a crucial bottleneck for the development of M/NEMS devices.We present a model of a nano-beam stuck to the substrate in consideration of both surface elasticity and residual surface stress.The crit...Nanowire stiction is a crucial bottleneck for the development of M/NEMS devices.We present a model of a nano-beam stuck to the substrate in consideration of both surface elasticity and residual surface stress.The critical detachment length can be derived from the transversality condition using the variational method.The effects of the surface parameters on the adhesion of the nano-beam are discussed in detail.These analyses provide some suggestions for engineers in the design and fabrication of more accurate M/NEMS instruments.展开更多
基金by the National Natural Science Foundation of China under Grant Nos 10802099 and 11102140the Doctoral Fund of Ministry of Education of China(No 200804251520)+1 种基金the Natural Science Foundation of Shandong Province(No ZR2009AQ006)the Brain Korea Scholarship from Seoul National University。
文摘Nanowire stiction is a crucial bottleneck for the development of M/NEMS devices.We present a model of a nano-beam stuck to the substrate in consideration of both surface elasticity and residual surface stress.The critical detachment length can be derived from the transversality condition using the variational method.The effects of the surface parameters on the adhesion of the nano-beam are discussed in detail.These analyses provide some suggestions for engineers in the design and fabrication of more accurate M/NEMS instruments.