为保障系统的制冷量与可靠性,EAST托卡马克装置2k W氦制冷机采用了动压气体轴承电涡流制动氦透平膨胀机替代原有的油气混合轴承氦透平膨胀机。新电涡流制动氦透平膨胀机配合转子冷却回路运行,制动功率最大可达10 k W。氦透平膨胀机采用...为保障系统的制冷量与可靠性,EAST托卡马克装置2k W氦制冷机采用了动压气体轴承电涡流制动氦透平膨胀机替代原有的油气混合轴承氦透平膨胀机。新电涡流制动氦透平膨胀机配合转子冷却回路运行,制动功率最大可达10 k W。氦透平膨胀机采用全动压径向气体轴承,而下止推轴承则引入静压气体用于增加止推轴承的承载力。目前,大功率电涡流制动氦透平膨胀机已完成在EAST氦制冷机中的安装与调试运行。介绍了电涡流制动氦透平膨胀机的测量与控制设计,在调试运行的基础上总结了氦透平膨胀机的启动与停机控制流程,并对其低温调试进行了详细分析。调试结果表明,电涡流制动的应用简化了氦透平膨胀机的启动、停机与操作流程,有助于EAST氦制冷机全自动控制的实现。展开更多
Since 2006, the superconducting toroidal field(TF) coils of the Experimental Advanced Superconducting Tokomak(EAST) have been successfully cooled by supercritical helium at a temperature of 4.5 K and a pressure of...Since 2006, the superconducting toroidal field(TF) coils of the Experimental Advanced Superconducting Tokomak(EAST) have been successfully cooled by supercritical helium at a temperature of 4.5 K and a pressure of 4 bara in eleven experiments. To obtain higher operating currents and magnetic fields it is necessary to lower the operating temperature of the TF coils.The EAST sub-cooling helium cryogenic system, with a warm oil ring pump(ORP), was tested twice in cool-down experiments, which made the TF coils operate at 3.8 K. However, the long term operational stability of the sub-cooling system cannot be guaranteed because of the ORP's poor mechanical and control performance. In this paper, the present status of the EAST subcooling helium cryogenic system is described, and then several cooling methods below 4.2 K and their merits are presented and analyzed. Finally, an upgrading method with a cold compressor for an EAST sub-cooling helium cryogenic system is proposed. The new process flow and thermodynamic calculation of the sub-cooling helium system, and the main parameters of the cold compressor, are also presented in detail. This work will provide a reference for the future upgrading of the sub-cooling helium system for higher operation parameters of the EAST device.展开更多
文摘为保障系统的制冷量与可靠性,EAST托卡马克装置2k W氦制冷机采用了动压气体轴承电涡流制动氦透平膨胀机替代原有的油气混合轴承氦透平膨胀机。新电涡流制动氦透平膨胀机配合转子冷却回路运行,制动功率最大可达10 k W。氦透平膨胀机采用全动压径向气体轴承,而下止推轴承则引入静压气体用于增加止推轴承的承载力。目前,大功率电涡流制动氦透平膨胀机已完成在EAST氦制冷机中的安装与调试运行。介绍了电涡流制动氦透平膨胀机的测量与控制设计,在调试运行的基础上总结了氦透平膨胀机的启动与停机控制流程,并对其低温调试进行了详细分析。调试结果表明,电涡流制动的应用简化了氦透平膨胀机的启动、停机与操作流程,有助于EAST氦制冷机全自动控制的实现。
基金supported by National Natural Science Foundation of China(No.11505237)
文摘Since 2006, the superconducting toroidal field(TF) coils of the Experimental Advanced Superconducting Tokomak(EAST) have been successfully cooled by supercritical helium at a temperature of 4.5 K and a pressure of 4 bara in eleven experiments. To obtain higher operating currents and magnetic fields it is necessary to lower the operating temperature of the TF coils.The EAST sub-cooling helium cryogenic system, with a warm oil ring pump(ORP), was tested twice in cool-down experiments, which made the TF coils operate at 3.8 K. However, the long term operational stability of the sub-cooling system cannot be guaranteed because of the ORP's poor mechanical and control performance. In this paper, the present status of the EAST subcooling helium cryogenic system is described, and then several cooling methods below 4.2 K and their merits are presented and analyzed. Finally, an upgrading method with a cold compressor for an EAST sub-cooling helium cryogenic system is proposed. The new process flow and thermodynamic calculation of the sub-cooling helium system, and the main parameters of the cold compressor, are also presented in detail. This work will provide a reference for the future upgrading of the sub-cooling helium system for higher operation parameters of the EAST device.