期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
低算力深度学习下的图像卡通风格化研究 被引量:1
1
作者 徐鹏飞 +2 位作者 武仲科 申佳丽 王醒策 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第6期888-895,共8页
在深入研究图像风格迁移的基础上,提出了一种适用于图形处理器性能受限情况下,卡通(cartoon)图像风格迁移训练的生成式对抗网络(generative adversarial networks,GAN).利用视觉几何组(visual geometry group,VGG)网络提取图片先验信息... 在深入研究图像风格迁移的基础上,提出了一种适用于图形处理器性能受限情况下,卡通(cartoon)图像风格迁移训练的生成式对抗网络(generative adversarial networks,GAN).利用视觉几何组(visual geometry group,VGG)网络提取图片先验信息,实现学习过程的加速;裁剪cartoonGAN模型,在保证效果的基础上,使得低性能计算条件下的网络收敛成为可能;设计合理的损失函数,保证整体风格化效果.基于tensorflow 2.0构建试验平台,通过对试验结果分析可发现,该方法的迁移效果好,稳定性强,且收敛时间短.对算法的参数和初始化方法给出了相关讨论,并提出了进一步的解决方案. 展开更多
关键词 风格迁移 深度学习 生成式对抗网络 卡通风格化
下载PDF
采用带注意力机制3D U-Net网络的地质模型参数化技术 被引量:3
2
作者 李小波 李欣 +4 位作者 闫林 李顺明 王继强 李心浩 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2023年第1期167-173,共7页
针对卷积神经网络增强的主成分分析技术(CNN-PCA)这种地质模型参数化技术在油藏复杂地质特征刻画精度和泛化能力方面存在的问题,不使用预训练好的C3D视频动作分析模型来提取三维模型风格特征,而使用新的损失函数并引入一种带注意力机制... 针对卷积神经网络增强的主成分分析技术(CNN-PCA)这种地质模型参数化技术在油藏复杂地质特征刻画精度和泛化能力方面存在的问题,不使用预训练好的C3D视频动作分析模型来提取三维模型风格特征,而使用新的损失函数并引入一种带注意力机制的3D U-Net网络来补全主成分分析方法(PCA)降维过程中丢失的地质模型细节信息,并以一个复合河道砂体油藏为例进行了应用效果分析。研究表明,与CNN-PCA技术相比,采用带注意力机制的3DU-Net网络能够更好地补全PCA降维过程中丢失的地质模型细节信息,在反映原始地质模型的流动特性方面具有更好的效果,并能改善油藏历史拟合的技术效果。 展开更多
关键词 油藏历史拟合 地质模型参数化 深度学习 注意力机制 3D U-Net网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部