期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
生成对抗网络改进角度与应用研究综述 被引量:11
1
作者 张彬 +3 位作者 张敏 李佳 张建勋 郭志刚 《计算机应用研究》 CSCD 北大核心 2023年第3期649-658,共10页
生成对抗网络(GAN)作为一种新兴的生成式模型,逐渐发展应用于图像生成、三维重构、跨模态转换等领域,有效解决了常规卷积神经网络在图像生成类任务方面效率低下的问题,填补了深度学习在图像生成领域上的短板。为了帮助后续研究人员快速... 生成对抗网络(GAN)作为一种新兴的生成式模型,逐渐发展应用于图像生成、三维重构、跨模态转换等领域,有效解决了常规卷积神经网络在图像生成类任务方面效率低下的问题,填补了深度学习在图像生成领域上的短板。为了帮助后续研究人员快速并全面了解GAN,根据近年来的文献对GAN的改进模型进行梳理。首先从网络结构、目标函数两个角度介绍了GAN的基本原理,然后对GAN的各种衍生模型从改进角度、应用类型两个方面进行详细的阐述和总结,分别从主观定性、客观定量和任务专项评估等角度对生成图像的质量和多样性进行归纳分析,最后讨论了GAN系列模型近年来的一些核心问题与最新研究进展,并分析了未来的发展趋势。 展开更多
关键词 生成对抗网络 图像生成 图像转换 生成式模型
下载PDF
多尺度语义信息无监督山水画风格迁移网络 被引量:1
2
作者 张建勋 +2 位作者 董文鑫 高林枫 倪锦园 《计算机工程与应用》 CSCD 北大核心 2024年第4期258-269,共12页
针对图像转换类的生成对抗网络在处理无监督风格迁移任务时存在的纹理杂乱、生成图像质量差的问题,基于循环一致性损失提出了循环矫正多尺度评估生成对抗网络。首先在网络架构的设计上,基于图像的三层语义信息提出了多尺度评估网络架构... 针对图像转换类的生成对抗网络在处理无监督风格迁移任务时存在的纹理杂乱、生成图像质量差的问题,基于循环一致性损失提出了循环矫正多尺度评估生成对抗网络。首先在网络架构的设计上,基于图像的三层语义信息提出了多尺度评估网络架构,以此强化源域到目标域的迁移效果;其次在损失函数的改进上,提出了多尺度对抗损失以及循环矫正损失,用于以更严苛的目标引导模型的迭代优化方向,生成视觉质量更好的图片;最后为了预防模式崩溃的问题,在风格特征的编码阶段添加了注意力机制以提取重要的特征信息,在网络的各阶段引入ACON激活函数以加强网络的非线性表达能力,避免神经元坏死。实验结果表明,相比于CycleGAN、ACL-GAN,所提出方法在山水画风格迁移数据集上的FID值分别降低了21.80%和34.33%;为了验证模型的泛化能力,在Vangogh2Photo和Monet2Photo两个公开数据集上进行了泛化实验对比,FID值相比于两个对照网络分别降低了7.58%、18.14%和4.65%、6.99%。 展开更多
关键词 无监督风格迁移 生成对抗网络(GAN) 多尺度评估 CycleGAN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部