SLAM(Simultaneously Localization And Mapping)同步定位与地图构建作为移动机器人智能感知的关键技术。但是,大多已有的SLAM方法是在静止环境下实现的,当环境中存在移动频繁的障碍物时,SLAM建图会产生运动畸变,导致机器人无法进行精...SLAM(Simultaneously Localization And Mapping)同步定位与地图构建作为移动机器人智能感知的关键技术。但是,大多已有的SLAM方法是在静止环境下实现的,当环境中存在移动频繁的障碍物时,SLAM建图会产生运动畸变,导致机器人无法进行精准的定位导航。同时,激光雷达等三维扫描设备获得的三维点云数据存在着大量的冗余三维数据点,过多的冗余数据不仅浪费大量的存储空间,同时也影响了各种点云处理算法的实时性。针对以上问题,本文提出一种SLAM运动畸变去除方法和一种基于曲率的点云数据分类简化框架。它通过激光插值法优化SLAM运动畸变,将优化后的点云数据分类简化。它能在提高SLAM建图精度,同时也很好的消除三维点云数据中特征不明显区域的冗余数据点,大大提高计算机运行效率。展开更多
文摘SLAM(Simultaneously Localization And Mapping)同步定位与地图构建作为移动机器人智能感知的关键技术。但是,大多已有的SLAM方法是在静止环境下实现的,当环境中存在移动频繁的障碍物时,SLAM建图会产生运动畸变,导致机器人无法进行精准的定位导航。同时,激光雷达等三维扫描设备获得的三维点云数据存在着大量的冗余三维数据点,过多的冗余数据不仅浪费大量的存储空间,同时也影响了各种点云处理算法的实时性。针对以上问题,本文提出一种SLAM运动畸变去除方法和一种基于曲率的点云数据分类简化框架。它通过激光插值法优化SLAM运动畸变,将优化后的点云数据分类简化。它能在提高SLAM建图精度,同时也很好的消除三维点云数据中特征不明显区域的冗余数据点,大大提高计算机运行效率。