Binary Ce-Zr(CZ),Pr-Zr(PZ) and ternary Ce-Zr-Pr(CZP) mixed oxides were prepared by an ammonia-aided co-precipitation method,and were aged in a steam/air flow at 1050 °C.X-ray diffraction(XRD),Raman spectr...Binary Ce-Zr(CZ),Pr-Zr(PZ) and ternary Ce-Zr-Pr(CZP) mixed oxides were prepared by an ammonia-aided co-precipitation method,and were aged in a steam/air flow at 1050 °C.X-ray diffraction(XRD),Raman spectra,X-photon spectra(XPS) and CO temperature programmed reduction(TPR) were carried out to characterize the micro-structure and reducibility of catalysts.The oxygen storage capacity(OSC) was evaluated with CO serving as probe gas.The results showed that a pseudo cubic structure was formed for the Zr-rich ceria-zirconia mixed oxides with Pr doping.The insertion of Pr prevented the phase segregation of the mixed oxides during the hydrothermal ageing.The Pr doped samples showed better redox performances in comparison with CZ,and the sample doped with 5 wt.% Pr showed the most remarkably promoted dynamic oxygen storage capacity.This phenomenon was closely related to both the reducibility and oxygen mobility of the mixed oxides.The introduction of praseodymium into ceria-zirconia could accelerate the oxygen migration by increasing the amount of oxygen vacancies,although it was difficult for Pr3+ ions themselves to participate in the oxygen exchange process.展开更多
Four kinds of CeO2-ZrO2 mixed oxides, i.e., a physical mixture of ceria and zirconia (CZP), zirconia-coated ceria (ZCC), ceria-coated zirconia (CCZ) and a chemical mixture of celia and zirconia (CZC), were pre...Four kinds of CeO2-ZrO2 mixed oxides, i.e., a physical mixture of ceria and zirconia (CZP), zirconia-coated ceria (ZCC), ceria-coated zirconia (CCZ) and a chemical mixture of celia and zirconia (CZC), were prepared. The oxygen storage capacity (OSC) measurements at 500℃ were performed under transient and stationary reaction conditions. All the curves of CO2 evolution during CO-O2 cycles presented a bimodal shape. The fast peak was primarily the result of the reaction of CO with the oxygen from the oxides, which was mainly determined by the nature of the material The sec- ond peak was mostly related to the CO2 adsorption behavior and was highly influenced by the surface area and the number of surface active sites. As a result, OSC activity of the samples followed in the order of CZC 〉 CCZ 〉 ZCC=CZP.展开更多
基金Project supported by the National Natural Science Foundation of China (50972069)the Ministry of Science and Technology, China (2009AA064803)the Chinese Ministry of Industry and Information Technology
文摘Binary Ce-Zr(CZ),Pr-Zr(PZ) and ternary Ce-Zr-Pr(CZP) mixed oxides were prepared by an ammonia-aided co-precipitation method,and were aged in a steam/air flow at 1050 °C.X-ray diffraction(XRD),Raman spectra,X-photon spectra(XPS) and CO temperature programmed reduction(TPR) were carried out to characterize the micro-structure and reducibility of catalysts.The oxygen storage capacity(OSC) was evaluated with CO serving as probe gas.The results showed that a pseudo cubic structure was formed for the Zr-rich ceria-zirconia mixed oxides with Pr doping.The insertion of Pr prevented the phase segregation of the mixed oxides during the hydrothermal ageing.The Pr doped samples showed better redox performances in comparison with CZ,and the sample doped with 5 wt.% Pr showed the most remarkably promoted dynamic oxygen storage capacity.This phenomenon was closely related to both the reducibility and oxygen mobility of the mixed oxides.The introduction of praseodymium into ceria-zirconia could accelerate the oxygen migration by increasing the amount of oxygen vacancies,although it was difficult for Pr3+ ions themselves to participate in the oxygen exchange process.
基金Project supported by the National"973"Project (2004CB719503)"863"Project (2006AA060303)the National Natural Science Foundation of China (50502023)
文摘Four kinds of CeO2-ZrO2 mixed oxides, i.e., a physical mixture of ceria and zirconia (CZP), zirconia-coated ceria (ZCC), ceria-coated zirconia (CCZ) and a chemical mixture of celia and zirconia (CZC), were prepared. The oxygen storage capacity (OSC) measurements at 500℃ were performed under transient and stationary reaction conditions. All the curves of CO2 evolution during CO-O2 cycles presented a bimodal shape. The fast peak was primarily the result of the reaction of CO with the oxygen from the oxides, which was mainly determined by the nature of the material The sec- ond peak was mostly related to the CO2 adsorption behavior and was highly influenced by the surface area and the number of surface active sites. As a result, OSC activity of the samples followed in the order of CZC 〉 CCZ 〉 ZCC=CZP.