期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多尺度时空信息融合驱动的图神经网络故障诊断方法
被引量:
1
1
作者
赵荣超
吴
百
礼
+3 位作者
陈祝云
温楷儒
张绍辉
李巍华
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第12期42-52,共11页
行星齿轮箱作为机械系统中常见的减速装置,由于长期在强噪声环境和变工况工作条件下运行,导致采集到的振动信号故障特征微弱、信号模式多变难以识别,针对行星齿轮箱故障诊断效果不佳,泛化能力差的问题,提出一种多尺度时空信息融合驱动...
行星齿轮箱作为机械系统中常见的减速装置,由于长期在强噪声环境和变工况工作条件下运行,导致采集到的振动信号故障特征微弱、信号模式多变难以识别,针对行星齿轮箱故障诊断效果不佳,泛化能力差的问题,提出一种多尺度时空信息融合驱动的图神经网络故障诊断方法来提高故障诊断模型准确率和泛化能力。该方法首先构建多尺度卷积核对原始时序信号进行不同尺度特征提取,削弱强噪声信号对有效信息的掩盖作用并增强故障特征的表达能力;然后再构造通道注意力机制,根据通道特征重要程度,给不同尺度卷积核提取的特征自适应分配不同权重,对含有关键故障特征的信息片段进行特征强化;最后对卷积输出的多尺度特征,构造空域下的图数据并通过图卷积网络聚合多尺度特征,从而有效利用数据的时序多维信息和空域结构关联信息,实现多尺度下时空域故障信息的深度融合,提高诊断的准确精度和模型的泛化性能。通过利用具有行星齿轮箱结构的风电装备故障数据集对所提方法进行验证,并与其他深度学习方法(第一层宽卷积核深度卷积神经网(WDCNN)、长短时记忆网络(LSTM)、残差网络(ResNet)、多尺度卷积神经网络(MSCNN))进行比较,结果表明:本研究提出的方法在跨负载和跨转速两种工况下的平均诊断准确率分别可以达到98.85%与91.29%,明显优于其他对比方法,验证了本研究提出的方法的强泛化性能和优越性。
展开更多
关键词
故障诊断
多尺度注意力机制
图神经网络
深度学习
下载PDF
职称材料
题名
多尺度时空信息融合驱动的图神经网络故障诊断方法
被引量:
1
1
作者
赵荣超
吴
百
礼
陈祝云
温楷儒
张绍辉
李巍华
机构
华南理工大学机械与汽车工程学院
琶洲实验室
北京信息科技大学重点科研机构
东莞理工学院机械工程学院
广东石油化工学院
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第12期42-52,共11页
基金
国家自然科学基金资助项目(52205101,52275111,51875208)
广东省基础与应用基础研究基金区域联合基金青年基金资助项目(2021A1515110708)
+1 种基金
广州市基础研究计划基础与应用基础研究项目(202201010615)
北京信息科技大学重点科研机构项目(KF20212223204)。
文摘
行星齿轮箱作为机械系统中常见的减速装置,由于长期在强噪声环境和变工况工作条件下运行,导致采集到的振动信号故障特征微弱、信号模式多变难以识别,针对行星齿轮箱故障诊断效果不佳,泛化能力差的问题,提出一种多尺度时空信息融合驱动的图神经网络故障诊断方法来提高故障诊断模型准确率和泛化能力。该方法首先构建多尺度卷积核对原始时序信号进行不同尺度特征提取,削弱强噪声信号对有效信息的掩盖作用并增强故障特征的表达能力;然后再构造通道注意力机制,根据通道特征重要程度,给不同尺度卷积核提取的特征自适应分配不同权重,对含有关键故障特征的信息片段进行特征强化;最后对卷积输出的多尺度特征,构造空域下的图数据并通过图卷积网络聚合多尺度特征,从而有效利用数据的时序多维信息和空域结构关联信息,实现多尺度下时空域故障信息的深度融合,提高诊断的准确精度和模型的泛化性能。通过利用具有行星齿轮箱结构的风电装备故障数据集对所提方法进行验证,并与其他深度学习方法(第一层宽卷积核深度卷积神经网(WDCNN)、长短时记忆网络(LSTM)、残差网络(ResNet)、多尺度卷积神经网络(MSCNN))进行比较,结果表明:本研究提出的方法在跨负载和跨转速两种工况下的平均诊断准确率分别可以达到98.85%与91.29%,明显优于其他对比方法,验证了本研究提出的方法的强泛化性能和优越性。
关键词
故障诊断
多尺度注意力机制
图神经网络
深度学习
Keywords
fault diagnosis
multi-scale attention mechanism
graph neural network
deep learning
分类号
TH17 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多尺度时空信息融合驱动的图神经网络故障诊断方法
赵荣超
吴
百
礼
陈祝云
温楷儒
张绍辉
李巍华
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部