The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The expli...The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The explicit form of energy eigenvalues is found, and the eigenfunctions are obtained in terms of the Jacobi polynomials. It shows that for the same azimuthal quantum number, the energy E increases monotonically with respect to the noncomnmtative parameter and the minimal length parameter. Additionally, we also report some special cases aiming to discuss the effect of the noncommutative coordinate space and the minimal length in the energy spectrum.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11465006 and 11565009)the Project of Research Foundation for Graduate Students in Guizhou Province,China(Grant No.(2017)11108)
文摘The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The explicit form of energy eigenvalues is found, and the eigenfunctions are obtained in terms of the Jacobi polynomials. It shows that for the same azimuthal quantum number, the energy E increases monotonically with respect to the noncomnmtative parameter and the minimal length parameter. Additionally, we also report some special cases aiming to discuss the effect of the noncommutative coordinate space and the minimal length in the energy spectrum.