期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多目标异权重回归的冷水机组故障诊断显式模型
1
作者 韩华 +2 位作者 杨钰婷 陆海龙 凌敏彬 《制冷学报》 CAS CSCD 北大核心 2024年第1期118-128,共11页
针对冷水机组中常见的7种故障,本文基于交叉熵损失函数和随机梯度下降算法建立了多目标异权重回归模型,进行故障诊断。该模型较常规的机器学习分类模型简单,无需迭代,计算速度快,且为显式模型(非黑箱),可直观分析各参数对每类故障的重... 针对冷水机组中常见的7种故障,本文基于交叉熵损失函数和随机梯度下降算法建立了多目标异权重回归模型,进行故障诊断。该模型较常规的机器学习分类模型简单,无需迭代,计算速度快,且为显式模型(非黑箱),可直观分析各参数对每类故障的重要程度。与传统的单目标回归模型相比,故障诊断性能优势显著,在不同特征集合下,性能最低提升40.50%。对比不同文献中特征集合在本模型中的效果,并提出了新的特征集合,正常运行及7类故障的总体诊断准确率可达89.83%,局部故障的诊断准确率达到98%以上。通过可视化诊断模型中的参数权重,发现过冷度和供油温度参数对诊断制冷剂泄漏、制冷剂过充和润滑油过量3种系统性故障最为重要;供油压力、冷凝器趋近温度、蒸发器与冷凝器的水流量参数对诊断4种局部故障最为重要。 展开更多
关键词 冷水机组 故障诊断 显式模型 交叉熵 随机梯度下降
下载PDF
基于XGBoost-RF的制冷剂泄漏故障检测与诊断 被引量:1
2
作者 韩华 +3 位作者 任正雄 高雨 江松轩 杨钰婷 《暖通空调》 2023年第1期105-111,130,共8页
针对冷水机组运行中正常数据多于故障数据情况和制冷系统中最常见的制冷剂泄漏故障,本文采用极端梯度提升算法(XGBoost)建立故障检测模型,采用随机森林(RF)算法建立故障诊断模型,研究了检测阈值改变对检测模型的影响及有、无正常样本训... 针对冷水机组运行中正常数据多于故障数据情况和制冷系统中最常见的制冷剂泄漏故障,本文采用极端梯度提升算法(XGBoost)建立故障检测模型,采用随机森林(RF)算法建立故障诊断模型,研究了检测阈值改变对检测模型的影响及有、无正常样本训练的诊断模型的对比。结果表明,在检测阈值设定为0.99时,可保证大部分故障样本均能被检测出来,且虚警率低,仅由故障数据训练得到的诊断模型整体性能最佳,可最大限度发挥检测模型和诊断模型的优势。 展开更多
关键词 冷水机组 制冷剂泄漏 故障检测与诊断 极端梯度提升 随机森林 阈值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部