Herein,we report an excellent,supported Ru(III)‐ChCl/AC catalyst with lower Ru content,where the ionic complex ChRuCl4 serves as the active component for acetylene hydrochlorination.The prepared heterogeneous Ru‐10%...Herein,we report an excellent,supported Ru(III)‐ChCl/AC catalyst with lower Ru content,where the ionic complex ChRuCl4 serves as the active component for acetylene hydrochlorination.The prepared heterogeneous Ru‐10%ChCl/AC catalyst shows excellent activity and long‐term stability.In this system,ChCl provides an environment for the ChRuCl4 to be stabilized as Ru(III),thus suppressing the reduction of the active species and the aggregation of ruthenium species during the reaction.The interaction between reactants and catalyst species was investigated by catalyst characterizations in combination with DFT calculations to disclose the effect of the ChRuCl4 complex and ChCl on the catalytic performance.This inexpensive,efficient,and long‐term catalyst is a competitive candidate for application in the hydrochlorination industry.展开更多
文摘Herein,we report an excellent,supported Ru(III)‐ChCl/AC catalyst with lower Ru content,where the ionic complex ChRuCl4 serves as the active component for acetylene hydrochlorination.The prepared heterogeneous Ru‐10%ChCl/AC catalyst shows excellent activity and long‐term stability.In this system,ChCl provides an environment for the ChRuCl4 to be stabilized as Ru(III),thus suppressing the reduction of the active species and the aggregation of ruthenium species during the reaction.The interaction between reactants and catalyst species was investigated by catalyst characterizations in combination with DFT calculations to disclose the effect of the ChRuCl4 complex and ChCl on the catalytic performance.This inexpensive,efficient,and long‐term catalyst is a competitive candidate for application in the hydrochlorination industry.