针对语音情感识别任务中说话者的差异性,计算谱特征的一阶差分、二阶差分组成三通道的特征集输入二维网络。结合卷积神经网络、双向长短时记忆网络以及注意力机制建立基线模型,引入深度残差收缩网络分配二维网络中的通道权重,进一步提...针对语音情感识别任务中说话者的差异性,计算谱特征的一阶差分、二阶差分组成三通道的特征集输入二维网络。结合卷积神经网络、双向长短时记忆网络以及注意力机制建立基线模型,引入深度残差收缩网络分配二维网络中的通道权重,进一步提高语音情感识别的精度。为提升模型的学习效果,采取特征层融合(特征向量并行和特征向量拼接两种方式)和决策层融合(平均得分和最大得分两种方式)等不同信息融合机制。结果表明:(1)特征层融合中的特征向量并行策略是更有效的方式;(2)本文提出模型在CASIA和EMO⁃DB数据库下分别取得了84.93%和86.83%的未加权平均召回率(Unweighted average recall,UAR),相较于基线模型,引入深度残差收缩网络后的模型在CASIA和EMO⁃DB数据库上的未加权召回率分别提高5.3%和6.2%。展开更多
文摘针对语音情感识别任务中说话者的差异性,计算谱特征的一阶差分、二阶差分组成三通道的特征集输入二维网络。结合卷积神经网络、双向长短时记忆网络以及注意力机制建立基线模型,引入深度残差收缩网络分配二维网络中的通道权重,进一步提高语音情感识别的精度。为提升模型的学习效果,采取特征层融合(特征向量并行和特征向量拼接两种方式)和决策层融合(平均得分和最大得分两种方式)等不同信息融合机制。结果表明:(1)特征层融合中的特征向量并行策略是更有效的方式;(2)本文提出模型在CASIA和EMO⁃DB数据库下分别取得了84.93%和86.83%的未加权平均召回率(Unweighted average recall,UAR),相较于基线模型,引入深度残差收缩网络后的模型在CASIA和EMO⁃DB数据库上的未加权召回率分别提高5.3%和6.2%。