锂离子电池是一个复杂的电化学动态系统,难以通过单一的监测电池内部的物理和化学特性实现健康状态(state of health,SOH)在线估算。为此提出以欧姆内阻增加量、极化内阻增加量和极化电容减少量作为电池的健康因子(health indicator,HI)...锂离子电池是一个复杂的电化学动态系统,难以通过单一的监测电池内部的物理和化学特性实现健康状态(state of health,SOH)在线估算。为此提出以欧姆内阻增加量、极化内阻增加量和极化电容减少量作为电池的健康因子(health indicator,HI),并引入灰色神经网络离线训练以HI为输入,电池容量退化量为输出的灰色神经网络模型,最后通过在线构建电池HI实现电池SOH估算。实验结果表明所提出的HI能够有效表征电池健康状态,灰色神经网络模型与BP神经网络模型相比,具有更高的SOH在线估算精度,估算误差不超过2%。展开更多
文摘锂离子电池是一个复杂的电化学动态系统,难以通过单一的监测电池内部的物理和化学特性实现健康状态(state of health,SOH)在线估算。为此提出以欧姆内阻增加量、极化内阻增加量和极化电容减少量作为电池的健康因子(health indicator,HI),并引入灰色神经网络离线训练以HI为输入,电池容量退化量为输出的灰色神经网络模型,最后通过在线构建电池HI实现电池SOH估算。实验结果表明所提出的HI能够有效表征电池健康状态,灰色神经网络模型与BP神经网络模型相比,具有更高的SOH在线估算精度,估算误差不超过2%。