电池状态有效评估过程中数据驱动法的模型输入虽与容量呈现相关性,但并没有考虑其信息量及信息质量,低质量的数据输入会造成一定程度的预测偏差。针对上述问题,提出一种计及健康特征信息量的加权神经网络电池健康状态(state of health,S...电池状态有效评估过程中数据驱动法的模型输入虽与容量呈现相关性,但并没有考虑其信息量及信息质量,低质量的数据输入会造成一定程度的预测偏差。针对上述问题,提出一种计及健康特征信息量的加权神经网络电池健康状态(state of health,SOH)预测与剩余寿命(remaining useful life,RUL)估计模型。该模型在GA-BP神经网络的基础上,通过确定有效健康特征数据集,利用数据信息度构建动量因子来保证神经网络迭代收敛速度。并基于熵权思想过滤出低信息量健康特征的预测结果,将过滤后的预测结果作为电池老化模型的输入,进一步实现剩余寿命的估计。通过公开电池老化数据集与实验平台进行验证,得到该模型健康状态预测结果MAE、RMSE分别控制在0.63%、0.81%之下,剩余寿命估计结果MAE、RMSE分别控制在0.0031mA·h、0.0042mA·h之下,具有良好的可行性与有效性。展开更多
文摘电池状态有效评估过程中数据驱动法的模型输入虽与容量呈现相关性,但并没有考虑其信息量及信息质量,低质量的数据输入会造成一定程度的预测偏差。针对上述问题,提出一种计及健康特征信息量的加权神经网络电池健康状态(state of health,SOH)预测与剩余寿命(remaining useful life,RUL)估计模型。该模型在GA-BP神经网络的基础上,通过确定有效健康特征数据集,利用数据信息度构建动量因子来保证神经网络迭代收敛速度。并基于熵权思想过滤出低信息量健康特征的预测结果,将过滤后的预测结果作为电池老化模型的输入,进一步实现剩余寿命的估计。通过公开电池老化数据集与实验平台进行验证,得到该模型健康状态预测结果MAE、RMSE分别控制在0.63%、0.81%之下,剩余寿命估计结果MAE、RMSE分别控制在0.0031mA·h、0.0042mA·h之下,具有良好的可行性与有效性。