选择东北典型黑土区--德惠市、扶余市和双城市为研究区,利用便携式地物光谱仪获取土壤光谱数据,基于原始光谱值及一阶微分、倒数的对数、连续统去除变换,分别建立了黑土有机质含量的多元线性逐步回归模型、偏最小二乘回归模型和BP神经...选择东北典型黑土区--德惠市、扶余市和双城市为研究区,利用便携式地物光谱仪获取土壤光谱数据,基于原始光谱值及一阶微分、倒数的对数、连续统去除变换,分别建立了黑土有机质含量的多元线性逐步回归模型、偏最小二乘回归模型和BP神经网络模型。结果表明:高光谱与土壤有机质含量在多个波段相关性较好,其中有机质与反射率一阶微分处理的相关性最好,在光谱584 nm处其相关性最强(r=-0.60,n=81)。光谱一阶微分处理数据在三种建模方法中的预测及验证精度均高于原始光谱值、倒数的对数和连续统去除变换,因此一阶微分为最佳光谱变换形式。偏最小二乘回归分析的预测效果整体优于多元线性逐步回归分析和BP神经网络分析,光谱一阶微分处理的偏最小二乘回归模型呈现出最佳预测效果,决定系数为0.71、均方根误差为2.29 g kg^-1(n=53)。展开更多
文摘选择东北典型黑土区--德惠市、扶余市和双城市为研究区,利用便携式地物光谱仪获取土壤光谱数据,基于原始光谱值及一阶微分、倒数的对数、连续统去除变换,分别建立了黑土有机质含量的多元线性逐步回归模型、偏最小二乘回归模型和BP神经网络模型。结果表明:高光谱与土壤有机质含量在多个波段相关性较好,其中有机质与反射率一阶微分处理的相关性最好,在光谱584 nm处其相关性最强(r=-0.60,n=81)。光谱一阶微分处理数据在三种建模方法中的预测及验证精度均高于原始光谱值、倒数的对数和连续统去除变换,因此一阶微分为最佳光谱变换形式。偏最小二乘回归分析的预测效果整体优于多元线性逐步回归分析和BP神经网络分析,光谱一阶微分处理的偏最小二乘回归模型呈现出最佳预测效果,决定系数为0.71、均方根误差为2.29 g kg^-1(n=53)。